自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(218)
  • 资源 (21)
  • 论坛 (3)
  • 问答 (1)
  • 收藏
  • 关注

原创 神经网络代码总是停在to(device)很久之后才能继续运行(解决)

如图所示,每次用cpu就能跑,但跑非常慢,然后就会把cuda设置为True,这样就在gpu上面跑了,但每次跑到to(device) 的时候就会卡很久很久,总之还是很慢很慢,所以在朋友的帮助下解决了这个问题。CUDA版本检查,我的显卡是3060,据说GeForce RTX 30系列显卡仅支持CUDA 11.1及以上版本,于是去安装了CUDA11.1。检查下环境变量,没毛病:然后再在终端执行:nvcc -V 检查下,没毛病:接着,在pytorch官网找到cuda11.1对应的pyt...

2021-06-05 11:58:34 34

原创 ValueError: check_hostname requires server_hostname

关代理

2021-06-05 11:53:36 15

原创 File “<frozen importlib._bootstrap>“, line 1006, in _gcd_import File “<frozen importlib._bootstr

主要报错: File "<frozen importlib._bootstrap>", line 1006, in _gcd_import File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen i...

2021-06-05 11:52:09 54

原创 RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0

看到这个报错我就想,是不是只要涉及到Tensor的地方,都要带一个to(device),此处的device指的是cuda于是我找到对应的没有采用to(device) 的但涉及到 tensor 的代码,将以下部分:actions_v.unsqueeze(-1).type(torch.LongTensor)改成了:actions_v.unsqueeze(-1).type(torch.LongTensor).to(device)重新运行代码,果然不再报错了。报错的本意就是:希望所有..

2021-06-05 11:30:58 16

原创 TypeError: Parameter to MergeFrom() must be instance of same class: expected Summary got Summary.

问题就在这里:这几行代码注释掉,程序就能正常运行,所以我知道可能是tensorboardX版本问题,但是网上找不到,最后在一篇博文https://blog.csdn.net/qq_43620967/article/details/110199356里面挖到了答案,这里把它作为标题放出来,帮助更多人。把原来的:from tensorboardX import SummaryWriter改为:from torch.utils.tensorboard import SummaryW..

2021-06-05 10:55:01 14

原创 Exception: ROM is missing for pong, see https://github.com/openai/atari-py#roms for instructions

点进链接https://github.com/openai/atari-py#roms,hui'k'n'da

2021-06-05 09:36:53 24

翻译 Could not find module ‘Anaconda3\envs\py39\lib\site-packages\atari_py\ale_interface\ale_c.dll‘

报错里面有:FileNotFoundError: Could not find module 'D:\ProgramData\Anaconda3\envs\py39\lib\site-packages\atari_py\ale_interface\ale_c.dll' (or one of its dependencies). Try using the full path with constructor syntax.

2021-06-04 21:56:10 9

原创 conda.exceptions.UnavailableInvalidChannel: The channel is not accessible or is invalid.

有一天,我想要用anaconda新建一个虚拟环境,没曾想遇到了阻碍,一同报错:其实症结就在这里,解决办法是,打开C:\Users\{用户名}\.condarc 文件,把报错的channel url从该文件中删除,保存文件后,再重新运行你想要执行的命令。可能之后还会类似的错误,就继续把相应的行删除即可。最后就可以运行成功啦!这么简单的问题,弄了这么久才解决,眼泪掉下来...

2021-06-03 23:27:04 9

原创 Could not load dynamic library ‘cudnn64_7.dll‘; dlerror cudnn64_7.dll not found

在网上找,不是下载链接失效,就是要我49积分,后来我找到一个好办法用 everything 软件全文查找,结果在不同目录里面找到一堆cudnn64_7.dll,当然它们大小不一,貌似又有点区别我随便挑了一个,复制粘贴到我CUDA101对应的目录:D:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin然后再运行代码就成了...

2021-05-19 09:53:59 17

原创 早起做LeetCode——剑指 Offer 11. 旋转数组的最小数字

做题链接:https://leetcode-cn.com/problems/xuan-zhuan-shu-zu-de-zui-xiao-shu-zi-lcof/二分法 + 反向去重法提交结果:耗时4ms,内存11.8M由于在去重的地方优化了下,耗时是官方解答的一半当遇到相同元素时,由于不确定遍历左边还是右边,这里采用的方法是,先从mid开始往前遍历到low,找到第一个不等于mid处值的元素a,如果a<mid处值,则最小值肯定在[low,a]之间;如果a>mid处值,则说明

2021-05-12 10:48:31 26

原创 早起做LeetCode——剑指 Offer 09. 用两个栈实现队列

做题链接:https://leetcode-cn.com/problems/yong-liang-ge-zhan-shi-xian-dui-lie-lcof/用双栈代替队列,一个栈用于push,一个栈用于popclass CQueue { stack<int> stack1, stack2;public: CQueue() { while(!stack1.empty()) stack1.pop(); while(!stack2.em

2021-05-11 14:59:00 3

原创 早起做LeetCode——剑指 Offer 10- I. 斐波那契数列

做题链接:https://leetcode-cn.com/problems/fei-bo-na-qi-shu-lie-lcof/该题为简单题,且好测试,多测试几下再提交,定能通过class Solution {public: int fib(int n) { static vector<int> fibs(101); static int max_val = 1000000007; if(n == 0) return 0;

2021-05-10 11:43:34 4

原创 早起做LeetCode——剑指 Offer 07. 重建二叉树

做题链接:https://leetcode-cn.com/problems/zhong-jian-er-cha-shu-lcof/这道题较为简单,采用递归方式就可以轻松解决,但是由于对C++编程不太熟悉,也费了点功夫。此处采用了首尾序号标记法,没有重复构建数组,以免占用过多内存。元素查找处的代码可做进一步优化,以降低时间复杂度。/** * Definition for a binary tree node. * struct TreeNode { * int val;

2021-05-10 11:20:52 4

原创 IndexError: index 9 is out of bounds for axis 1 with size 9

报错1:IndexError: index 9 is out of bounds for axis 1 with size 9肯定是下标搞错了,把出问题的代码行,每一个数组下标都检查一下,被赋值的一边也要检查还有一个类似的报错:index 1 is out of bounds for axis 0 with size 1a = np.zeros((1, n - 1)) // 调用单个元素要用:a[0][下标]a = np.zeros(n - 1) // 调用单个元素要用:a[下标]即可

2021-05-08 15:01:46 89

原创 早起做LeetCode——替换空格&从头到尾打印链表

这两道属于简单题,一提交就能成的那种,提交结果也不错,在此做个记录//时间:0,空间:创建一个新数组的空间 class Solution {public: string replaceSpace(string s) { char a[30000]; int len = s.length(); for(int i=0,j=0; i <=len; i++){ if(s[i] != ' '){

2021-05-08 08:27:34 7

原创 os.system(‘rm -f {}‘.format(file_path))

1、os.system('rm -f {}'.format(file_path)) 在wins下跑不通,可将 rm -f 改为 del:file_path = os.path.join(root.replace('/', '\\'), '*_{}.pkl'.format(file_iters[i]))print('remove files:', file_path)os.system('del {}'.format(file_path))

2021-05-07 22:56:39 21

原创 torch.zeros(log_probs.size()).scatter_(1, targets.unsqueeze(1).data.cpu(), 1)报错

复现HOReID代码时遇到的问题,详细报错:Expected object of scalar type Long but got scalar type Int for argument #3 'index'内外网都没有找到解决办法,我搞了一晚上,最后调通了(不知道后续有没有影响,至少当下是可以跑通代码了)改成如下:targets = torch.zeros(log_probs.size()).scatter_(1, (targets.unsqueeze(1).data.cpu()).

2021-05-06 21:09:09 21

原创 program received signal sigsegv报错

为了图省事,用一行代码声明并初始化了一个二位数组,然后报错了vector<vector<int>> son(m, vector<int>(n, 0));改成以下代码就正常运行了,具体不知道是什么原因,可能是resize比较重要吧vector<vector<int>> son(n);for(int i=0; i<n; i++){ son[i].resize(m);} ...

2021-04-29 10:06:33 16

原创 LeetCode 剑指 Offer 03. 数组中重复的数字

题目链接:https://leetcode-cn.com/problems/shu-zu-zhong-zhong-fu-de-shu-zi-lcof/#include <bits/stdc++.h>#include <sys/time.h>#include <set>using namespace std;// 双指针法,提交结果为超时:8738.321ms//class Solution {//public:// int findRep

2021-04-28 08:32:04 21

原创 Colab之kaggle填坑记(非常详实)

第一次在colab上面使用kaggle,关于kaggle.json的授权问题折腾了很久,经验如下:step1. 完成手机绑定登陆kaggle,主页右上角有个人头像,点击进入,点击“Acount”,完成“Phone Verification”,国家选择‘CN’,手机号要加-,如138-1345-1234step2. 获取授权码登陆kaggle,主页右上角有个人头像,点击进入,点击“Acount”,先点击“Expire API Token”,确保将所有过去的Token全部置为过期,然后点击“Cr

2021-04-10 11:53:30 74

原创 TP、FN、TN、TP详解

每次遇到TP、FN、TN、TP都晕头,这一次好好认认真真总结下,大家可以收藏下,随时查看P、N 代表检测到的样本状态,T、F代表检测是否有误,以FP为例,FP表示样本被检测为正样本,但检测是错误,因此该样本实际是负样本,FP是指把负样本错检测成正样本了(这里简写为“实负测正”)1、假阳率:False Positive Rate = 实负测正/ 实负 = FP/ (FP + TN)2、假阴率:False Negative Rate = 实正测负/ 实正 = FN/ (TP+ FN)...

2021-03-31 16:51:17 198

转载 Normalization&Standardization&Regularization

转载自:https://www.cnblogs.com/nzmx123/p/8961527.htmlNormalization:归一化,一般在training之前对数据的操作,消除量纲什么的映射到【0,1】内Standardization:数据正态化,使平均值1方差为0.亦是对数据的处理Regularization:正则化,对LOSS的惩罚项防止过拟合。...

2021-03-30 16:31:39 17

原创 sys.version_info > (3, 0)是什么意思?

# -------------------------------------------------------------------------------# Description: # Reference: # Author: Sophia# Date: 2021/3/28# -------------------------------------------------------------------------------import sysprint(sy.

2021-03-28 14:28:53 247

原创 分析理解 scipy.sparse.csr_matrix 中的 indptr & indices & data

indptr =[0 2 5 7]稀疏矩阵的行数:row = len(indptr) - 1 = 4 - 1 = 3第0行非零元素个数:2 - 0 = 2;位置分别在index = 1,3;数值分别为1,2第1行非零元素个数:5 - 2 = 3;位置分别在index = 0,1,3;数值分别为1,1,2第2行非零元素个数:7 - 5 = 2;位置分别在index = 0,2;数值分别为2,5indices =[1 3 0 1 3 0 2]稀疏矩阵的列数:col = max(ind..

2021-03-28 13:59:09 68

原创 双线性内插法&最近邻内插法-python(详细)

在网上找了一圈,没有找到完整且正确的python代码,所以在这里发出来理论可以直接看一下百度百科:双线性插值公式很简单,画一下图就知道怎么回事了,简单说就是根据相邻点的远近乘以对应的权重,离得越远权重越小,离得越近权重越大重点就是一个公式:f(x,y) = f(0,0)*(1-a)*(1-b) +f(0,1)*(1-a)*b + f(1,0)*a*(1-b) + f(1,1)*a*b这里要特别说明的是,在边缘处理上,我也采用了类似的方法:在底部边缘采用:f(x,y) = f(0,0.

2021-03-24 23:41:58 165

原创 ModuleNotFoundError: No module named ‘ipykernel‘

今天执行一个画图的程序,结果老报错,结果安装一下就好,连导入都不用,很奇怪pip install ipykernel

2021-03-18 17:35:27 77

原创 mxnet.gluon.data.vision.transforms.ToTensor

import mxnetprint(help(mxnet.gluon.data.vision.transforms.ToTensor))由下可见,小小的ToTensor竟实现了这么多转换:1、数值类型:uint8 ——> float322、数值范围:[0, 255]——> [0,1]3、矩阵格式:(H x W x C) or (N x H x W x C)——>(C x H x W) or (N x H x W x C) PS:H为高,W为宽,C为通道,N为...

2021-03-17 11:04:30 20

原创 MXNet学习——初识GoogleLeNet

相关理论&故事背景书上都有,不打算复述一遍,这里仅作代码记录&分享此处非直接可用代码,由于学习过程中多次使用相同函数,故而将一些常用函数整理成了工具包,MxNet学习——自定义工具包两者结合,方可运行代码# -------------------------------------------------------------------------------# Description: GoogleLeNet 含并行连接的网络# Reference: # Aut

2021-03-11 23:13:52 20

原创 MXNet学习——初识NiN

相关理论&故事背景书上都有,不打算复述一遍,这里仅作代码记录&分享此处非直接可用代码,由于学习过程中多次使用相同函数,故而将一些常用函数整理成了工具包,MxNet学习——自定义工具包两者结合,方可运行代码# -------------------------------------------------------------------------------# Description: NiN 网络中的网络# Description: NiN 思路:串联多个由卷积

2021-03-11 21:27:03 12

原创 MXNet学习——初识VGG

相关理论&故事背景书上都有,不打算复述一遍,这里仅作代码记录&分享此处非直接可用代码,由于学习过程中多次使用相同函数,故而将一些常用函数整理成了工具包,MxNet学习——自定义工具包两者结合,方可运行代码# -------------------------------------------------------------------------------# Description: VGG 使用重复元素的非常深的网络# Description: VGG 提出.

2021-03-11 21:17:33 21

原创 MXNet学习——初识AlexNet

相关理论&故事背景书上都有,不打算复述一遍,这里仅作代码记录&分享此处非直接可用代码,由于学习过程中多次使用相同函数,故而将一些常用函数整理成了工具包,MxNet学习——自定义工具包两者结合,方可运行代码# -------------------------------------------------------------------------------# Description: 深度卷积神经网络 AlexNet# Description: 它是浅层神经网.

2021-03-11 21:10:38 10

原创 MXNet学习——初识LeNet

相关理论&故事背景书上都有,不打算复述一遍,这里仅作代码记录&分享此处非直接可用代码,由于学习过程中多次使用相同函数,故而将一些常用函数整理成了工具包,MxNet学习——自定义工具包两者结合,方可运行代码# -------------------------------------------------------------------------------# Description: 卷积神经网络 LeNet# Description: 卷积神经网络就是含卷积.

2021-03-11 21:04:48 10

原创 MXNet学习——自定义工具包

目前正在看《动手学深度学习》 ,这里是书中建议的部分工具包内容,内容持续更新中……# -------------------------------------------------------------------------------# Description: # Reference:# Author: Sophia# Date: 2021/2/23# -------------------------------------------------------------

2021-03-11 20:57:23 17

原创 MXNet学习——读取 & 存储:变量、NDArray、字符串映射到 NDArray 的字典、模型的参数

练习手稿,记录&分享# -------------------------------------------------------------------------------# Description: 读取 & 存储:变量、NDArray、字符串映射到 NDArray 的字典、模型的参数# Reference:# Author: Sophia# Date: 2021/3/9# ------------------------------------------

2021-03-11 17:45:14 12 1

原创 mxnet.gluon.data.vision.datasets 各种自带数据集了解一下

mxnet可以直接调用的数据集有:MNIST(手写数据集)、FashionMNIST(服装数据集,共10类)、CIFAR10(动物&交通工具,共10类)、CIFAR100(含各种各类的事物,共100类)vision.datasetsGluon provides pre-defined vision datasets functions in themxnet.gluon.data.vision.datasetsmodule.Dataset container.Classes..

2021-03-11 17:39:20 46

原创 mxnet.gluon.data.vision.transforms 模块的功能了解一下

该模块的功能主要有:随机加噪、随机抖动(色相、亮度、饱和度 or 对比度)、正则化、裁剪、翻转、resize 调整大小vision.transformsGluon provides pre-defined vision transformation and data augmentation functions in themxnet.gluon.data.vision.transformsmodule. transforms.Compose Sequential..

2021-03-11 17:33:09 14

原创 MXNet学习——创建 NDArray、NDAarry 运算、广播机制

练习手稿,记录&分享# -------------------------------------------------------------------------------# Description: 创建 NDArray、NDAarry 运算、广播机制# Reference:# Author: Sophia# Date: 2021/1/28# -------------------------------------------------------------.

2021-03-11 17:27:24 14

原创 python中slice 和 range区别

Python中,slice 和 range自带参数都一样,但slice和range功能是不同的slice用于数组切片,而range不可当作数组切片来用range可以构建数组,而slice不能

2021-03-01 19:07:07 43

原创 讨论:如何理解同构

1、什么是同构?如果判断同构?同构想讲的是一个什么事呢?通俗的说,就是在两个没啥直接关系的图中去找到他们结构上的相同点。这个结构指的是什么呢?就是关系(Relation),到了图中,两个点之间有关系,说得就是它们之间有一条边相连(假设是简单图)。那么,就很好理解什么叫做图同构了,图 G1的全部顶点被映射到图 G2后,这些顶点可能标号变了,但是如果在“旧”的图中有的关系,在“新”图中依然保留,只不过是“位置”变了。你可以想象这样一个场景:1、我们把人与人之间的关系画成一张图,如果两个人是朋友,就在

2021-02-23 20:10:16 402

原创 MXNet学习之nd.random_normal 与 nd.random.normal 的比较

网上大神解答:新版把 nd.random_normal重命名到了nd.random.normal,为了跟numpy一致。推荐使用后者1、找模块里所有的函数与类,发现两者是完全一致的print(dir(nd.random_normal))print(dir(nd.random.normal))输出:2、查找特定函数和类的使用,发现两者区别也不大print(help(nd.random_normal))print(help(nd.random.normal))输出:H...

2021-02-22 23:16:17 193

c++语言程序设计(郑莉).xmind

该xmind笔记是我在2020年准备东南大学复试期间写下的,内容是我在反复学习《C++语言程序设计(郑莉)》书籍,以及哔哩哔哩上的197集清华大学公开课的基础上,总结而成的,内容可说是非常详细了,最后一遍的时候,我把编程时的一些要注意的细节也添上去了,无论是正在学习C++的新学者,还是准备C++考研复试的学生,或者正在准备C++面试的求职者,都可以来看,电脑手机都可以看,ipad竖屏最佳。

2020-06-30

机器学习实战(第四章-朴素贝叶斯-所有代码与详细注解及相关数据文件-python3.7)

机器学习实战(第四章-朴素贝叶斯-所有代码与详细注解及相关数据文件-python3.7) 机器学习实战(第四章-朴素贝叶斯-所有代码与详细注解及相关数据文件-python3.7)

2020-12-09

机器学习实战(第三章-决策树-ID3算法-所有代码与详细注解-python3.7)

机器学习实战(第三章-决策树-ID3算法-所有代码与详细注解-python3.7) 机器学习实战(第三章-决策树-ID3算法-所有代码与详细注解-python3.7)

2020-12-09

gcc相关安装包.zip

楼主安装gcc很不容易,17个依赖安装包,最后终于安装成功了,特此上传,解压到空文件夹,执行命令:rpm -ivh *.rpm一起安装即可

2019-05-21

全国火车站信息

全国火车站信息

2019-03-13

操作系统.xmind

该笔记包含了王道操作系统书上的几乎所有重点内容,笔记还算是全面的,量也比较大,大家放心下载,电脑手机都可以看,复习时用ipad竖屏查看方式最佳哦

2020-03-13

数据结构.xmind

计算机考研王道数据结构xmind笔记,只记录了图及其之前的概念内容,并不是整本书的完整笔记,大家看清楚再下载哦!

2020-03-13

Java-WebSocket-1.3.0.jar,Java-WebSocket-1.3.0-sources.jar

Java-WebSocket-1.3.0.jar 和 Java-WebSocket-1.3.0-sources.jar

2017-11-14

计算机组成原理.xmind

该笔记包含了王道计算机组成原理书上的几乎所有重点内容,笔记还算是全面的,量也比较大,大家放心下载,电脑手机都可以看,复习时用ipad竖屏查看方式最佳哦。(PS:由于粗心,上传过不全的文档,请大家遇到问题先联系我)

2021-03-15

Linux就该这么学笔记(一)

Linux就该这么学笔记(一)

2019-03-13

ch05_logistic_regression.rar

机器学习实战(第五章-Logistics回归-所有代码与详细注解及相关数据文件-python3.7) 机器学习实战(第五章-Logistics回归-所有代码与详细注解及相关数据文件-python3.7)

2020-12-10

机器学习实战第二章的kNN练习

本人第一次学习机器学习实战第二章,花了一天的时间研究了kNN算法,将书内的程序写了一遍,变为python3.7适用版本,该压缩包内包含程序与数据,理论上来说直接可以运行的那种

2020-09-28

计算机组成原理2333.xmind

该笔记包含了王道计算机组成原理书上的几乎所有重点内容,笔记还算是全面的,量也比较大,大家放心下载,电脑手机都可以看,复习时用ipad竖屏查看方式最佳哦。(PS:由于粗心,上传过不全的文档,请大家遇到问题先联系我)

2020-03-31

ncurses相关包.rar

安装vim时,执行./configure,遇到报错: checking for tgetent()... configure: error: NOT FOUND! You need to install a terminal library; for example ncurses. Or specify the name of the library with --with-tlib. 就是因为缺了这些包,在目录下执行 rpm -ivh *.rpm 把里面的四个rpm文件一起安装后,再执行./configure就没有报错了

2019-05-21

MyBatis3.2.4完全自学手册.pdf

MyBatis3.2.4完全自学手册.pdf 下载,MyBatis3.2.4完全自学手册.pdf 下载

2017-11-14

postgresql.doc

postgresql安装和使用简介

2019-03-14

流畅的python笔记第一章上

流畅的python笔记第一章上

2019-03-12

Jsoup1.11.1+HTTPClient4.5.3的最新全部jar包

Jsoup1.11.1和HTTPClient 4.5.3的最新全部jar包,官网下载

2017-11-14

流畅的python 阅读笔记(第二章 序列构成的数组)

流畅的python 阅读笔记(第二章 序列构成的数组)

2019-03-12

流畅的python笔记第一章下

流畅的python笔记第一章下

2019-03-12

LearnElasticSearch.pdf

LearnElasticSearch.pdf 下载,LearnElasticSearch.pdf 下载

2017-11-14

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除