数据结构与算法分析笔记与总结(java实现)--二叉树12:二叉树的镜像

题目:操作给定的二叉树,将其变换为源二叉树的镜像。

输入描述:

思路:首先要理解业务逻辑,何为镜像?所谓镜像就是对于任何一个结点,将其左右子树进行交换即可。对于一棵以root为根结点的二叉树,要将其镜像,首先将其左右子树(root.left为根的子树)和(root.right为根的子树)进行镜像,然后将root.left和root.right这2棵子树进行交换即可。显然要处理root结点子树需要先处理其左右结点子树问题,因此显然是对后序递归遍历进行改造即可。设计一个递归函数输入根结点root,将其镜像后返回新树的根结点:

递推关系:

TreeNodeleftTree=this.process(root.left);

TreeNoderightTree=this.process(root.right);

root.left=rightTree;

root.right=leftTree;

returnroot;

边界条件:

If(root==null)return null;

题目逻辑很简单,递归操作也很简单,只要返回一个信息即可。

注意:题目中并不要求返回新的镜像树的根结点,可能OJ将root设置为了一个后台全局或者成员变量,可以自动接收到改变后的root,因此这里不需要返回,直接为root赋上新的值即可。但是在递归方法中显然每次都需要返回一个跟结点,否则无法实现功能。

 

//输入根结点子树,求出其镜像的二叉树,返回根结点

publicclass Solution {

    public void Mirror(TreeNode root) {

       //特殊输入:注意题目中不要求返回新的根结点,直接return即可

        if(root==null) return;

       //调用递归方法解决问题

        root=this.process(root);

    }

   

   //设计一个递归函数process,用来求一棵二叉树的镜像树的根结点

    private TreeNode process(TreeNode root){

       //递归的边界条件

        if(root==null) return null;

       //①先处理左子树

        TreeNodeleftTree=this.process(root.left);

       //②处理右子树

        TreeNoderightTree=this.process(root.right);

       //处理当前树得到镜像树

        root.left=rightTree;

        root.right=leftTree;

       //返回新的镜像树的根结点

        return root;

    }

}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值