一、简介
(一)什么是计算材料学
计算材料学(Computational Materials Science),是材料科学与计算机科学的交叉学科,是一门正在快速发展的新兴学科,是关于材料组成、结构、性能、服役性能的计算机模拟与设计的学科,是材料科学研究里的“计算机实验”。它涉及材料、物理、计算机、数学、化学等多门学科。
随着科学技术的发展,科学研究的体系越来越复杂,传统的解析推导方法已不敷应用,甚至无能为力。计算机科学的发展和计算机运算能力的不断提高,为复杂体系的研究提供了新的手段。以材料这样一个典型的复杂体系为研究对象的新学科— 计算材料科学也应运而生,并迅速得到发展。
(二)理论
计算材料科学的发展无论是在理论上还是在实验上都使原有的材料研究手段得以极大的改观。它不仅使理论研究从解析推导的束缚中解脱出来,而且使实验研究方法得到根本的改革,使其建立在更加客观的基础上,更有利于从实验现象中揭示客观规律,证实客观规律。因此,计算材料科学是材料研究领域理论研究与实验研究的桥梁,不仅为理论研究提供了新途径,而且使实验研究进入了一个新的阶段。
研究体系的复杂性表现在多个方面,从低自由度体系转变到多维自由度体系,从标量体系扩展到矢量、张量系统,从线性系统到非线性系统的研究都使解析方法失去了原有的威力。因此,借助于计算机进行计算与模拟恰恰成为唯一可能的途径。复杂性是科学发展的必然结果,计算材料科学的产生和发展也是必然趋势,它对一些重要科学问题的圆满解决,充分说明了计算材料科学的重要作用和现实意义。
计算材料科学涉及的学科领域极广,并渗透到诸多方面。计算材料科学除数值计算以外,还有许多的应用领域,其中计算机模拟是一个潜力巨大的发展方向。
(三)主要内容
计算材料学主要包括两个方面的内容:一方面是计算模拟,即从实验数据出发,通过建立数学模型及数值计算,模拟实际过程;另一方面是材料的计算机设计,即直接通过理论模型和计算,预测或设计材料结构与性能。前者使材料研究不是停留在实验结果和定性的讨论上,而是使特定材料体系的实验结果上升为一般的、定量的理论,后者则使材料的研究与开发更具方向性、前瞻性,有助于原始性创新,可以大大提高研究效率。因此,计算材料学是连接材料学理论与实验的桥梁。
1.特点
材料的组成、结构、性能、服役性能是材料研究的四大要素,传统的材料研究以实验室研究为主,是一门实验科学。但是,随着对材料性能的要求不断的提高,材料学研究对象的空间尺度在不断变小,只对微米级的显微结构进行研究不能揭示材料性能的本质,纳米结构、原子像已成为材料研究的内容,对功能材料甚至要研究到电子层次。因此,材料研究越来越依赖于高端的测试技术,研究难度和成本也越来越高。另外,服役性能在材料研究中越来越受到重视,服役性能的研究就是要研究材料与服役环境的相互作用及其对材料性能的影响。随着材料应用环境的日益复杂化,材料服役性能的实验室研究也变得越来越困难。总之,仅仅依靠实验室的实验来进行材料研究已难以满足现代新材料研究和发展的要求。然而计算机模拟技术可以根据有关的基本理论,在计算机虚拟环境下从微观、介观、宏观尺度对材料进行多层次研究,也可以模拟超高温、超高压等极端环境下的材料服役性能,模拟材料在服役条件下的性能演变规律、失效机理,进而实现材料服役性能的改善和材料设计。因此,在现代材料学领域中,计算机“实验”已成为与实验室的实验具有同样重要地位的研究手段,而且随着计算材料学的不断发展,它的作用会越来越大。
2.计算方法
计算材料学涉及材料的各个方面,如不同层次的结构、各种性能等等,因此,有很多相应的计算方法。在进行材料计算时,首先要根据所要计算的对象、条件、要求等因素选择适当的方法。要想做好选择,必须了解材料计算方法的分类。目前,主要有两种分类方法:一是按理论模型和方法分类,二是按材料计算的特征空间尺寸(Characteristic space scale)分类。材料的性能在很大程度上取决于材料的微结构,材料的用途不同,决定其性能的微结构尺度会有很大的差别。例如,对结构材料来说,影响其力学性能的结构尺度在微米以上,而对于电、光、磁等功能材料来说可能要小到纳米,甚至是电子结构。因此,计算材料学的研究对象的特征空间尺度从埃到米。时间是计算材料学的另一个重要的参量。对于不同的研究对象或计算方法,材料计算的时间尺度可从10-15秒(如分子动力学方法等)到年(如对于腐蚀、蠕变、疲劳等的模拟)。对于具有不同特征空间、时间尺度的研究对象,均有相应的材料计算方法。
目前常用的计算方法包括第一性原理从头计算法,分子动力学方法,蒙特卡洛方法,元胞自动机方法、相场法、几何拓扑模型方法、有限元分析等。
二、常用软件支持情况
序号 | 类别 | 软件名称 | CPU | GPU | DCU |
1 | 分子动力学 | Lammps | 支持 | 支持 | 支持 |
2 | 分子动力学 | Gromacs | 支持 | 支持 | 支持 |
3 | 分子动力学 | Namd | 支持 | 支持 | 支持 |
4 | 分子动力学 | OpenMM | 支持 | 支持 | 支持 |
5 | 分子动力学 | Amber | 支持 | 支持 | 支持 |
6 | 分子动力学 | HOOMD-blue | 未知 | 支持 | 支持 |
7 | 分子动力学/材料计算 | MISA-MD | 支持 | 支持 | 支持 |
8 | 分子动力学/量化计算 | CP2K | 支持 | 支持 | 支持 |
9 | 格点QCD | Chroma | 支持 | 支持 | 支持 |
10 | 格点QCD | QUDA | 支持 | 支持 | 支持 |
11 | 材料计算 | Vasp | 支持 | 支持 | 支持 |
12 | 材料计算 | Octopus | 支持 | 支持 | 支持 |
13 | 材料计算 | BigDFT | 支持 | 支持 | 支持 |
14 | 材料计算 | Quantum_Espresso(QE) | 支持 | 支持(CUDA Fortran) | 不支持 |
15 | 材料计算 | Abinit | 支持 | 支持 | 不支持 |
16 | 材料计算 | WIEN2k | 支持 | 不支持 | 不支持 |
17 | 材料计算 | FHI-aims | 支持 | 不支持 | 不支持 |
18 | 材料计算 | Wannier90 | 支持 | 不支持 | 不支持 |
19 | 材料计算 | Siesta | 支持 | 不支持 | 不支持 |
20 | 材料计算 | Openmx | 支持 | 不支持 | 不支持 |
21 | 材料计算 | GPAW | 支持 | 不支持 | 不支持 |
22 | 材料计算 | ELK | 支持 | 不支持 | 不支持 |
23 | 材料计算 | JDFTx | 支持 | 支持 | 不支持 |
24 | 材料计算、量化 | MaterailStudio | 支持 | 支持 | 不支持 |
25 | 材料计算、量化 | Qmcpack | 支持 | 支持 | 不支持 |
26 | 量化计算 | NWChem | 支持 | 支持 | 支持 |
27 | 量化计算 | Gaussian | 支持 | 支持 | 不支持 |
28 | 量化计算 | Q-Chem | 支持 | 未知 | 不支持 |
29 | 量化计算 | Gamess | 支持 | 未知 | 不支持 |
30 | 量化计算 | Molcas | 支持 | 未知 | 不支持 |
31 | 量化计算 | OpenMolcas | 支持 | 未知 | 不支持 |
32 | 量化计算 | Molpro | 支持 | 未知 | 不支持 |
33 | 粒子输运 | Geant4 | 支持 | 未知 | 未知 |
34 | 计算物理 | OpenChiral | 支持 | 未知 | 支持 |
35 | 计算物理 | PCGv2(Parton Cascade on GPU version 2) | 支持 | 支持 | 支持 |
36 | 计算化学 | BDF | 支持 | 支持 | 支持 |