keras
LoveMIss-Y
爱生活,爱学习,爱这个世界上一切让自己觉得快乐的东西,爱MIss-Y
展开
-
keras通过模型子类(SubClassing)化实现自定义模型
前言:前面有文章专门讲过使用keras如何实现自定义层,本文将继续介绍使用keras如何实现一个自定义模型,其实实现自定义层和自定义的方式与pytorch极度类似,注意体会他们的联系和区别,前面的文章参见:keras实现自定义层的关键步骤解析另外,本文基于tensorflow2.0的高层API——tf.keras,使用的案例是手写字识别一、函数式 API(Functional AP...原创 2019-08-14 11:46:53 · 6624 阅读 · 0 评论 -
keras技巧——如何获取某一个网络层的输出
前言:keras默认提供了如何获取某一个层的某一个节点的输出,但是没有提供如何获取某一个层的输出的接口,所以有时候我们需要获取某一个层的输出,则需要自己编写代码,但是鉴于keras高层封装的特性,编写起来实际上很简单,本文提供两种常见的方法来实现,基于上一篇文章的模型和代码:keras自定义回调函数查看训练的loss和accuracy一、模型加载以及各个层的信息查看从前面的定义...原创 2019-06-23 14:45:47 · 17624 阅读 · 9 评论 -
keras自定义回调函数查看训练的loss和accuracy
前言:keras是一个十分便捷的开发框架,为了更好的追踪网络训练过程中的损失函数loss和准确率accuracy,我们有几种处理方式,第一种是直接通过 history=model.fit(),来返回一个history对象,通过这个对象可以访问到训练过程训练集的loss和accuracy以及验证集的loss和accuracy。第二种方式就是通过自定义一个回调函数Call backs,来实现这...原创 2019-06-23 09:48:13 · 24554 阅读 · 17 评论 -
keras的图像预处理全攻略(四)—— ImageDataGenerator 类实践案例
前言:前面已经详细介绍了keras整个图像预处理模块的详细流程,参见下面两篇文章:keras的图像预处理全攻略(二)—— ImageDataGenerator 类keras的图像预处理全攻略(三)—— ImageDataGenerator 类的辅助类本文结合实际案例来说说明到底该怎么应用ImageDataGenerator 类以及需要注意的一些事项一、图像分类问题中Im...原创 2019-05-13 18:00:48 · 21008 阅读 · 9 评论 -
keras的图像预处理全攻略(三)—— ImageDataGenerator 类的辅助类
上一篇文章介绍了keras图像预处理的核心类—— ImageDataGenerator 类,其实关于keras的图像预处理与图像generator都是通过这个类来实现的,第一篇文章介绍的相关方法都是为这个类服务的辅助方法,本文要介绍的几个类都是为ImageDataGenerator 类服务的辅助类,所以在实际应用中,一般不需要用到辅助方法与辅助类,只需要使用ImageDataGene...原创 2019-05-13 10:20:24 · 5029 阅读 · 4 评论 -
keras实现自定义层的关键步骤解析
前言:Keras提供众多常见的已编写好的层对象,例如常见的卷积层、池化层等,我们可以直接通过以下代码调用。Keras中的层大致上分为两种类型:第一种是带有训练参数的:比如Dense层、Conv2D层,等等,我们在训练的过程中需要训练层的权重和偏置项;第二种是不带训练参数的:比如dropout层、flatten层、等等,我们不需要训练它的权重,只需要对输入进行加工处理再输出就行了。...原创 2019-05-24 16:41:01 · 18357 阅读 · 6 评论 -
Tensorboard深入详解(二)——在keras中自己实现Tensorboard可视化神经网络
前言:上一篇文章中《Tensorboard深入详解(一)——使用keras结合Tensorboard可视化神经网络详细教程》,我们可以看出使用keras预定义的回调函数可以非常方便的实现Tensorboard可视化,简单高效、使用快捷。但是也有不好的地方,比如我不想查看所有的权重,我只对某一个有兴趣,那我就不得不保存所有的信息到日志文件里面,这导致比较浪费,要是有办法可以定制就好了,本文不...原创 2019-05-16 09:18:42 · 2742 阅读 · 0 评论 -
keras的图像预处理全攻略(二)—— ImageDataGenerator 类
上一篇文章已经详细介绍了keras进行图像预处理的一些常规操作,但是有一个问题就是上面的那些方法都是针对一张图片进行操作的,我们在深度学习的时候,当然也可以事先先一张一张将图片进行预处理,然后再将图片放入训练,但是这样做效率比较低下,而且不是实时的,即图像的预处理变成了完全的事先操作,和后面的训练毫无关系。那有没有效率更加高校一些,在训练的时候边训练边处理的实时操作方法呢?keras提供了...原创 2019-05-10 15:46:51 · 48771 阅读 · 5 评论 -
Tensorboard深入详解(一)——使用keras结合Tensorboard可视化神经网络详细教程
前言:tensorboard是一个非常强大的工具、不仅仅可以帮助我们可视化神经网络训练过程中的各种参数,而且可以帮助我们更好的调整网络模型、网络参数,这一块类容后面会讲到,不管是tensorflow、keras、还是pytorch,tensorboard都提供了非常好的支持,本文是系列文章的第一篇,详细介绍基于keras+tensorboard如何来进行网络的可视化。写这篇文章的初衷很简单...原创 2019-05-15 14:33:15 · 27481 阅读 · 24 评论 -
keras的图像预处理全攻略(一)——基本的图像变换(Image Transform)方法
keras中主要提供了主要的四个模块:(1)......\Lib\site-packages\keras\preprocessing\image.py (这个不完全,完全的详细的参考下面的序号2)(2)......\Lib\site-packages\keras_preprocessing\image.py(3)......\Lib\site-packages\keras...原创 2019-05-10 11:43:35 · 16635 阅读 · 5 评论 -
keras的图像预处理全攻略(五)—— ImageDataGenerator 类结合神经网络的实践
前言:前面的系列文章已经系统的说明了keras的图像预处理操作,有原理部分、也有少量实践部分,可以参考下面的文章:keras的图像预处理全攻略(四)—— ImageDataGenerator 类实践案例keras的图像预处理全攻略(三)—— ImageDataGenerator 类的辅助类keras的图像预处理全攻略(二)—— ImageDataGenerator 类ker...原创 2019-05-14 16:42:24 · 4727 阅读 · 6 评论 -
【填坑记】使用keras绘制(plot_model)网络结构图总是出错的解决办法
本人使用的开发环境python3.6.8+tensorflow1.9+keras2.2.4前提:已经正确安装pydot和graphviz的python软件包,并且安装windows的graphviz安装包,并且配置好了环境变量错误:pydot不能够正确调用graphviz,请确保已经安装了graphviz并配置了环境变量网络上其它的解决方案:(1)确保安装顺序正确:gr...原创 2019-04-16 17:55:54 · 5429 阅读 · 2 评论