用免费硅基流动API阅读英文论文

前言

终于终于,期待已久的 Zotero 7 发布了,虽然一直在用测试版,但是想写一些教程又怕测试版的功能和特性不够稳定,这次终于发布正式版了,之后 Zotero 的各种功能和插件也会逐渐稳定,是时候来分享一下自己折腾 Zotero 过程中的一些小心得了。

翻译插件安装

要在 Zotero 7 中使用翻译功能,原生的软件并不支持。这里需要使用第三方的插件。如果要装的插件非常多,其实每个插件都用官方的方式安装并不方便。这里推荐大家一个用于"管理插件的插件"
syt2/zotero-addons: Install add-ons directly in Zotero | Zotero Add-on Market | Zotero插件市场 (github.com)
默认就是支持 Zotero 7 的版本了。
下载后点击 (工具) -> (插件),会进入下面的页面:
插件管理页
然后按照图示安装即可。
然后再点击 (工具) -> (插件市场),找到 Translate for Zotero,左键安装即可。
插件下载页面

翻译插件的使用

当选中一段内容时候,插件就会自动翻译:
选中翻译效果
同时右侧的状态栏也会出现翻译结果:
侧边栏翻译效果
但是对于默认的翻译 API 效果并不好。一方面是 Google 等工具需要魔法才能使用,另外一方面传统的翻译工具对于一些特别的名词翻译效果不佳。
例如:对于 LLM,Google 就会翻译为"法学硕士",同时对于一些长难句的翻译也不够流畅。
面对这种情况,使用 LLM 作为翻译工具就非常有用,一方面可以让一些名词翻译的更准确,不会出现法学硕士这种低级错误,另外一方面也会更流畅。

将大模型接入 Zotero

作为穷学生,自然想要使用免费的 API,这里我们选用了硅基流动 的 API 服务。硅基流动官方提供了例如 Qwen2、GLM-4 等最新的开源模型,且可以免费使用,10B 以内的模型用于翻译也是足够的了。
在注册完成账号后,进入 API管理页面,点击 创建新API密钥 即可。
在这里插入图片描述
回到 Zotero 7,点击 (编辑)->(设置),选择 翻译,进入翻译插件的设置。
在翻译服务处选择 ChatGPT,并把上一步得到的 API 密钥复制到后面的密钥栏中。
密钥设置
此时,模型还是无法直接使用的,需要进一步配置。点击边上的 配置 按钮。
模型配置
需要配置的主要是前面两项。对于模型接口,用于硅基流动是支持 OpenAI SDK 的,所以只需要填写 https://api.siliconflow.cn/v1/chat/completions,对于模型,我们这里填写的是 Qwen/Qwen2-7B-Instruct,其他免费的模型大家可以去这里 找到。在使用默认的提示词情况下,我比较推荐使用 Qwen/Qwen2-7B-Instruct

效果对比

这里找了一篇论文,使用了不同的模型和翻译器,对比一下翻译效果:
原文:

Large language models (LLMs) have a wealth of knowledge that allows them to excel in various Natural Language Processing (NLP) tasks. Current research focuses on enhancing their performance within their existing knowledge. Despite their vast knowledge, LLMs are still limited by the amount of information they can accommodate and comprehend. Therefore, the ability to understand their own limitations on the unknows, referred to as self-knowledge, is of paramount importance. This study aims to evaluate LLMs’ self-knowledge by assessing their ability to identify unanswerable or unknowable questions. We introduce an automated methodology to detect uncertainty in the responses of these models, providing a novel measure of their self-knowledge. We further introduce a unique dataset, SelfAware, consisting of unanswerable questions from five diverse categories and their answerable counterparts. Our extensive analysis, involving 20 LLMs including GPT-3, InstructGPT, and LLaMA, discovering an intrinsic capacity for self-knowledge within these models. Moreover, we demonstrate that in-context learning and instruction tuning can further enhance this self-knowledge. Despite this promising insight, our findings also highlight a considerable gap between the capabilities of these models and human proficiency in recognizing the limits of their knowledge.

Google

大型语言模型 (LLM) 拥有丰富的知识,使他们能够在各种自然语言处理 (NLP) 任务中表现出色。当前的研究重点是在现有知识范围内提高他们的表现。尽管法学硕士知识渊博,但他们所能容纳和理解的信息量仍然受到限制。因此,了解自己对未知事物的局限性的能力(称为自我认识)至关重要。本研究旨在通过评估法学硕士识别无法回答或不可知问题的能力来评估他们的自我认识。我们引入了一种自动化方法来检测这些模型响应中的不确定性,从而提供了一种新的自我认知测量方法。我们进一步介绍了一个独特的数据集 SelfAware,它由来自五个不同类别的无法回答的问题及其可回答的对应问题组成。我们进行了广泛的分析,涉及 20 名法学硕士,包括 GPT-3、InstructGPT 和 LLaMA,发现这些模型具有内在的自我认识能力。此外,我们证明情境学习和指令调整可以进一步增强这种自我认识。尽管这一见解很有希望,但我们的研究结果也凸显了这些模型的能力与人类认识其知识局限性的能力之间存在相当大的差距。

Google 的模型出现了法学硕士的问题
Qwen/Qwen2-7B-Instruct

大型语言模型(LLMs)拥有的丰富知识使得它们在自然语言处理(NLP)任务中表现出色。当前的研究致力于提升它们在现有知识范围内的性能。尽管它们拥有大量知识,但LLMs仍然受限于能够接纳和理解的信息量。因此,了解他们对未知领域的局限性,即所谓的“自我认知”,是至关重要的。本研究旨在通过评估LLMs识别无法回答或无法知晓问题的能力,来评估它们的自我认知程度。我们提出了一种自动化方法来检测这些模型在回应中的不确定性,提供了一种衡量其自我认知的新指标。我们还引入了一个独特的数据集,名为SelfAware,包括五个不同类别的无法回答的问题及其可回答的对应问题。我们的广泛分析涵盖了20个LLM模型,包括GPT-3、InstructGPT和LLaMA,发现了这些模型内在的自我认知能力。此外,我们展示了上下文学习和指令调参可以进一步提升它们的自我认知能力。尽管这一发现充满希望,但我们的研究结果也揭示了这些模型与人类在识别自身知识边界上的能力之间的显著差距。

然而使用大模型则没有这个问题

### 流动与Cherry Studio配置教程 #### 一、环境准备 为了成功部署流动DeepSeek大模型并使用Cherry Studio,在开始之前需要确保拥有合适的运行环境。这通常意味着一台具有足够计算资源(尤其是GPU支持)的机器以及Python开发环境已经就绪。 #### 二、安装Cherry Studio 按照官方提供的指导完成Cherry Studio软件包的获取与安装过程[^2]。此过程中需要注意版本兼容性和依赖项管理,以避免后续可能出现的技术难题。 #### 三、加载预训练模型 一旦Cherry Studio被正确设置好之后,则可以着手于导入由流动生成的大规模语言模型——即DeepSeek系列之一。具体操作涉及指定路径指向存储着所需权重文件的位置,并确认所有必要的配置选项都已适当调整以便顺利启动服务[^1]。 ```python from cherry_studio import ModelLoader model_loader = ModelLoader() deepseek_model = model_loader.load('path/to/deepseek/weights') ``` #### 四、执行推理任务 当一切准备工作完成后,即可利用所加载好的DeepSeek来进行实际的数据处理工作。这里可以通过API接口向该模型提交待分析文本片段作为输入,并接收经过预测后的输出结果用于进一步的应用场景中去。 ```python input_text = "example sentence" output_result = deepseek_model.predict(input_text) print(output_result) ``` #### 五、撰写技术分享文章 最后一步是在像CSDN这样的平台上记录整个项目实施经历和技术细节。编写此类博文不仅有助于个人总结学习成果,还能为其他开发者提供有价值的参考资料。建议围绕以下几个方面展开叙述: - **背景介绍**:解释为什么选择这个特定的主题进行研究; - **解决方案概述**:描述采用了哪些工具和技术来解决问题; - **实践经验分享**:详细介绍遇到的问题及其解决办法; - **未来展望**:讨论下一步计划或是对该领域发展趋势的看法;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值