数据挖掘领域十大经典算法之—K-邻近算法/kNN(超详细附代码)

数据挖掘领域十大经典算法之—K-邻近算法/kNN(超详细附代码)

                                                                                                                    2018年03月06日 15:09:41
                fuqiuai
                阅读数 8630
                                                                                                                            
            
                                
        
    


    
                                            
                                                
                            
                        
                    
                    版权声明:本文为博主原创文章,未经博主允许不得转载。                        https://blog.csdn.net/fuqiuai/article/details/79458648                    
                                                
                                    
                
                
                          相关文章:

数据挖掘领域十大经典算法之—C4.5算法(超详细附代码)
数据挖掘领域十大经典算法之—K-Means算法(超详细附代码)
数据挖掘领域十大经典算法之—SVM算法(超详细附代码)
数据挖掘领域十大经典算法之—Apriori算法
数据挖掘领域十大经典算法之—EM算法
数据挖掘领域十大经典算法之—PageRank算法
数据挖掘领域十大经典算法之—AdaBoost算法(超详细附代码)
数据挖掘领域十大经典算法之—朴素贝叶斯算法(超详细附代码)
数据挖掘领域十大经典算法之—CART算法(超详细附代码)

简介

又叫K-邻近算法,是监督学习中的一种分类算法。目的是根据已知类别的样本点集求出待分类的数据点类别。

基本思想

kNN的思想很简单:在训练集中选取离输入的数据点最近的k个邻居,根据这个k个邻居中出现次数最多的类别(最大表决规则),作为该数据点的类别。kNN算法中,所选择的邻居都是已经正确分类的对象。

e.g:下图中,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果k=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果k=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。

算法复杂度

kNN是一种lazy-learning算法,分类器不需要使用训练集进行训练,因此训练时间复杂度为0;kNN分类的计算复杂度和训练集中的文档数目成正比,也就是说,如果训练集中文档总数为n,那么kNN的分类时间复杂度为O(n);因此,最终的时间复杂度是O(n)。

优缺点

优点

理论成熟,思想简单,既可以用来做分类也可以用来做回归 ;
适合对稀有事件进行分类(例如:客户流失预测);
特别适合于多分类问题(multi-modal,对象具有多个类别标签,例如:根据基因特征来判断其功能分类), kNN比SVM的表现要好。

缺点

当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数;
计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点;
可理解性差,无法给出像决策树那样的规则。

代码

代码已在github上实现,这里也贴出来

coding:utf-8

import numpy as np

def createDataset():
‘’’
创建训练集,特征值分别为搞笑镜头、拥抱镜头、打斗镜头的数量
‘’’
learning_dataset = {“宝贝当家”: [45, 2, 9, “喜剧片”],
“美人鱼”: [21, 17, 5, “喜剧片”],
“澳门风云3”: [54, 9, 11, “喜剧片”],
“功夫熊猫3”: [39, 0, 31, “喜剧片”],
“谍影重重”: [5, 2, 57, “动作片”],
“叶问3”: [3, 2, 65, “动作片”],
“伦敦陷落”: [2, 3, 55, “动作片”],
“我的特工爷爷”: [6, 4, 21, “动作片”],
“奔爱”: [7, 46, 4, “爱情片”],
“夜孔雀”: [9, 39, 8, “爱情片”],
“代理情人”: [9, 38, 2, “爱情片”],
“新步步惊心”: [8, 34, 17, “爱情片”]}
return learning_dataset

def kNN(learning_dataset,dataPoint,k):
‘’’
kNN算法,返回k个邻居的类别和得到的测试数据的类别
‘’’
# s1:计算一个新样本与数据集中所有数据的距离
disList=[]
for key,v in learning_dataset.items():
d=np.linalg.norm(np.array(v[:3])-np.array(dataPoint)) #求范数 lin-alg norm是范数
disList.append([key,round(d,2)])

# s2:按照距离大小进行递增排序
disList.sort(key=lambda dis: dis[1]) 

***# **s3:选取距离最小的k个样本  ,欧式距离最小的几个类决定这个实例的类*****
    disList=disList[:k]

# s4:确定前k个样本所在类别出现的频率,并输出出现频率最高的类别
labels = {"喜剧片":0,"动作片":0,"爱情片":0}  
for s in disList:  
    label = learning_dataset[s[0]]  
    labels[label[len(label)-1]] += 1  
labels =sorted(labels.items(),key=lambda asd: asd[1],reverse=True)

return labels,labels[0][0]

if name == ‘main’:

learning_dataset=createDataset()

testData={"唐人街探案": [23, 3, 17, "?片"]}
dataPoint=list(testData.values())[0][:3]

k=6

labels,result=kNN(learning_dataset,dataPoint,k)
print(labels,result,sep='\n')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值