遗传算法
文章平均质量分 70
YisenData
这个作者很懒,什么都没留下…
展开
-
初识遗传算法(二): 适应度地形与协同进化
上一节讲了遗传算法的基本概念和一些专有名词,这一节谈谈适应度地形和协同进化1.适应度地形(fitness landscape)1.1适应度地形的定义适应度地形(fitness landscape)是由一系列基因型组成的三维的地形图(如图)。它包含三个基本元素1. 基因型的集合如果要生成一个适应度地形,则需要一个集合的基因型,即每个基因原创 2018-01-31 03:41:31 · 3391 阅读 · 0 评论 -
初识遗传算法(三): 模块化和积木
上节讨论了适应度地形和协同进化,这节来到了重点部分,模块化(Modularity)和积木(Building-blocks)。1.为什么使用模块化大致来说模块化有两大功效: 帮助理解网络和激发复杂系统的衍化性。(1)理解网络即将复杂的网络分为许多子网络(2)复杂系统的衍化性指的是: 对于一个复杂的生物种群,其适应度地形中可能存在很多盆地(basin),而这些盆地使得普原创 2018-02-02 05:10:51 · 1292 阅读 · 1 评论 -
初识遗传算法(一): 基本概念
通过借鉴大自然中物种的繁衍概念,演化算法通过在计算机中模拟每个个体的基因序列(和该个体的表现型),并通过组合多个个体,形成种群。对种群中的每个个体,采用类似大自然的自然选择,基因突变等手段促使种群的繁衍,最终达到想要的目标。构成演化算法的四大要素: 1.代表个体的方法,2.测量个体适应度的函数,3.选择算法,4.后代变异(包含交叉遗传crossover,基因突变mutation)原创 2018-01-30 00:34:05 · 1546 阅读 · 0 评论