Java实现网络摄像头实时视频人脸识别

1 项目特点

本项目最具亮点之处——简单:

  1. 学习简单
  2. 开发简单
  3. 部署简单

2 实现步骤

  1. 请参阅本人的这篇文章“JAIN SIP API详解与GB28181服务器实现【保姆级源码教程】http://t.csdnimg.cn/O2Rxi”先实现一个支持GB28181协议的视频预览平台,然后接入真实或虚拟(安卓手机可以通过安装模拟器实现)的网络摄像头,保证平台能通过http-flv地址正常取流预览。
  2. Java服务开启定时任务,每隔1秒采用ffmpeg抓取一帧图片,图片抓取成功后调用人脸识别算法,成功识别人脸后进行标记并保存标记后的图片。

如果有需求,也可以进行对接消息中间件实现告警推送的扩展。

3 代码实现

  1. 定时抓图

    	@Override
        public BaseResult faceDetection(String streamId) {
            ScheduledFuture scheduledFuture = ThreadPoolTaskConfig.getScheduledFuture(streamId);
            if(Objects.nonNull(scheduledFuture)){
                log.warn("[FaceServiceImpl] Face detection: {} is running.", streamId);
                return BaseResult.success("success");
            }
            List<String> playingStreams = redisUtil.getPlayingStreams();
            if(!playingStreams.contains(streamId)){
                log.error("[FaceDetection] Stream ID: {} inexistence.", streamId);
                return BaseResult.success("success");
            }
            MediaServerDTO mediaServerDTO = redisUtil.getMediaServerDTO();
            String fileName = streamId + ".jpg";
            schedulerManager.startPeriod(streamId, () -> {
                List<String> streams = redisUtil.getPlayingStreams();
                if(!streams.contains(streamId)){
                    schedulerManager.stopSchedule(streamId);
                    TaskContainer.remove(captureFaceSavePath, fileName);
                }
                // 抓图
                // rtsp://10.192.33.34:554/rtp/34020000001320000001_34020000001320000001
                // String streamUrl = String.format("rtsp://%s:%s/%s/%s/", mediaServerDTO.getIp(), "554", "rtp", streamId);
                // http://10.192.33.34:80/rtp/34020000001320000001_34020000001320000001.live.flv
                String streamUrl = String.format("http://%s:%s/%s/%s.live.flv", mediaServerDTO.getIp(), mediaServerDTO.getHttpPort(), "rtp", streamId);
                // 请求截图
                log.info("[CaptureTask]: " + fileName);
                // zlmRestfulUtils.getSnap(mediaServerDTO, streamUrl, 15, 1, captureFaceSavePath, fileName);
                FaceUtil.capture(ffmpegBinPath, streamUrl, captureFaceSavePath + fileName);
                // try {
                //     FaceUtil.capture(streamUrl, captureFaceSavePath + fileName);
                // } catch (IOException e) {
                //     e.printStackTrace();
                // }
                // FaceUtil.capture();
            }, 8);
            Optional<TaskPO> taskDaoById = taskDao.findById(streamId);
            if(taskDaoById.isPresent()){
                TaskPO taskPO = taskDaoById.get();
                taskPO.setFaceDetection(true);
                taskDao.save(taskPO);
            }
            TaskContainer.addStream(captureFaceSavePath, fileName);
            return BaseResult.success("success");
        }
    
  2. 人脸识别

    package com.example.mediasiphttpserver.config;
    
    import com.example.mediasiphttpserver.server.face.task.CaptureTask;
    import org.quartz.*;
    import org.springframework.beans.factory.annotation.Autowired;
    import org.springframework.context.annotation.Configuration;
    
    import javax.annotation.PostConstruct;
    
    /**
     * @author yrz
     * @create 2023/12/20
     */
    @Configuration
    public class SchedulerConfig {
        @Autowired
        private Scheduler scheduler;
    
        @PostConstruct
        public void scheduleJobs() throws SchedulerException {
            // 创建第一个JobDetail和Trigger
            JobDetail jobDetail1 = JobBuilder.newJob(CaptureTask.class)
                    .withIdentity("job1", "group1")
                    .build();
    
            CronTrigger trigger1 = TriggerBuilder.newTrigger()
                    .withIdentity("trigger1", "group1")
                    .withSchedule(CronScheduleBuilder.cronSchedule("0/10 * * * * ?"))
                    .build();
            // 将JobDetail和Trigger关联到Scheduler
            scheduler.scheduleJob(jobDetail1, trigger1);
        }
    }
    
    
    package com.example.mediasiphttpserver.server.face.task;
    
    import com.example.mediasiphttpserver.server.face.utils.FaceUtil;
    import com.example.mediasiphttpserver.server.face.utils.TaskContainer;
    import lombok.extern.slf4j.Slf4j;
    import org.quartz.Job;
    import org.quartz.JobExecutionContext;
    import org.quartz.JobExecutionException;
    
    import java.util.HashSet;
    import java.util.Map;
    import java.util.Set;
    
    /**
     * @author yrz
     * @create 2023/12/19
     */
    @Slf4j
    public class CaptureTask implements Job {
        @Override
        public void execute(JobExecutionContext jobExecutionContext) throws JobExecutionException {
            Set<Map.Entry<String, HashSet<String>>> entries = TaskContainer.getEntries();
            for(Map.Entry<String, HashSet<String>> entry : entries){
                String captureFaceSavePath = entry.getKey();
                HashSet<String> fileNames = entry.getValue();
                for(String fileName : fileNames){
                    FaceUtil.faceDetection(captureFaceSavePath, fileName);
                }
            }
        }
    }
    
    

4 效果展示

  1. flv预览后点击人脸任务在这里插入图片描述

  2. 开启/停止任务在这里插入图片描述

  3. 查看结果(无人脸被识别到展示默认图片)在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    有想了解该项目或想要源码的私信我(づ。◕ᴗᴗ◕。)づ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

倔强的初学者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值