第11周项目1 二叉树算法验证

问题及代码:

文件名称:main.cpp  btree.h  btree.cpp

作者:郑孚嘉

问题描述:运行并重复测试教学内容中涉及的算法。改变测试数据进行重复测试的意义在于,可以从更多角度体会算法,以达到逐渐掌握算法的程度。使用你的测试数据,并展示测试结果,观察运行结果,以此来领会算法。
(1)层次遍历算法的验证
(2)二叉树构造算法的验证
(3)中序线索化二叉树的算法验证
(4)哈夫曼编码的算法验证

代码:

(1)实现二叉树的层次遍历算法,并对用”A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))”创建的二叉树进行测试。
main.cpp

#include <stdio.h>
#include "btree.h"

void LevelOrder(BTNode *b)
{
    BTNode *p;
    BTNode *qu[MaxSize];    //定义环形队列,存放节点指针
    int front,rear; //定义队头和队尾指针
    front=rear=-1;      //置队列为空队列
    rear++;
    qu[rear]=b;     //根节点指针进入队列
    while (front!=rear) //队列不为空
    {
        front=(front+1)%MaxSize;
        p=qu[front];        //队头出队列
        printf("%c ",p->data);  //访问节点
        if (p->lchild!=NULL)    //有左孩子时将其进队
        {
            rear=(rear+1)%MaxSize;
            qu[rear]=p->lchild;
        }
        if (p->rchild!=NULL)    //有右孩子时将其进队
        {
            rear=(rear+1)%MaxSize;
            qu[rear]=p->rchild;
        }
    }
}

int main()
{
    BTNode *b;
    CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
    printf("二叉树b: ");
    DispBTNode(b);
    printf("\n");
    printf("层次遍历序列:\n");
    LevelOrder(b);
    DestroyBTNode(b);
    return 0;
}

运行结果:

 

(2)先序和中序构造

main.cpp

#include <stdio.h>
#include <malloc.h>
#include "btree.h"

BTNode *CreateBT1(char *pre,char *in,int n)
/*pre存放先序序列,in存放中序序列,n为二叉树结点个数,
本算法执行后返回构造的二叉链的根结点指针*/
{
    BTNode *s;
    char *p;
    int k;
    if (n<=0) return NULL;
    s=(BTNode *)malloc(sizeof(BTNode));     //创建二叉树结点*s
    s->data=*pre;
    for (p=in; p<in+n; p++)                 //在中序序列中找等于*ppos的位置k
        if (*p==*pre)                       //pre指向根结点
            break;                          //在in中找到后退出循环
    k=p-in;                                 //确定根结点在in中的位置
    s->lchild=CreateBT1(pre+1,in,k);        //递归构造左子树
    s->rchild=CreateBT1(pre+k+1,p+1,n-k-1); //递归构造右子树
    return s;
}

int main()
{
    ElemType pre[]="ABDGCEF",in[]="DGBAECF";
    BTNode *b1;
    b1=CreateBT1(pre,in,7);
    printf("b1:");
    DispBTNode(b1);
    printf("\n");
    return 0;
}


 

中序和后序构造

#include <stdio.h>
#include <malloc.h>
#include "btree.h"

BTNode *CreateBT2(char *post,char *in,int n)
/*post存放后序序列,in存放中序序列,n为二叉树结点个数,
本算法执行后返回构造的二叉链的根结点指针*/
{
    BTNode *s;
    char r,*p;
    int k;
    if (n<=0) return NULL;
    r=*(post+n-1);                          //根结点值
    s=(BTNode *)malloc(sizeof(BTNode));     //创建二叉树结点*s
    s->data=r;
    for (p=in; p<in+n; p++)                 //在in中查找根结点
        if (*p==r)
            break;
    k=p-in;                                 //k为根结点在in中的下标
    s->lchild=CreateBT2(post,in,k);         //递归构造左子树
    s->rchild=CreateBT2(post+k,p+1,n-k-1);  //递归构造右子树
    return s;
}

int main()
{
    ElemType in[]="DGBAECF",post[]="GDBEFCA";
    BTNode *b2;
    b2=CreateBT2(post,in,7);
    printf("b2:");
    DispBTNode(b2);
    printf("\n");
    return 0;
}

运行结果:

 

(3)main.cpp

#include <stdio.h>
#include <malloc.h>

#define MaxSize 100
typedef char ElemType;
typedef struct node
{
    ElemType data;
    int ltag,rtag;      //增加的线索标记
    struct node *lchild;
    struct node *rchild;
} TBTNode;

void CreateTBTNode(TBTNode * &b,char *str)
{
    TBTNode *St[MaxSize],*p=NULL;
    int top=-1,k,j=0;
    char ch;
    b=NULL;             //建立的二叉树初始时为空
    ch=str[j];
    while (ch!='\0')    //str未扫描完时循环
    {
        switch(ch)
        {
        case '(':
            top++;
            St[top]=p;
            k=1;
            break;      //为左结点
        case ')':
            top--;
            break;
        case ',':
            k=2;
            break;                          //为右结点
        default:
            p=(TBTNode *)malloc(sizeof(TBTNode));
            p->data=ch;
            p->lchild=p->rchild=NULL;
            if (b==NULL)                    //*p为二叉树的根结点
                b=p;
            else                            //已建立二叉树根结点
            {
                switch(k)
                {
                case 1:
                    St[top]->lchild=p;
                    break;
                case 2:
                    St[top]->rchild=p;
                    break;
                }
            }
        }
        j++;
        ch=str[j];
    }
}

void DispTBTNode(TBTNode *b)
{
    if (b!=NULL)
    {
        printf("%c",b->data);
        if (b->lchild!=NULL || b->rchild!=NULL)
        {
            printf("(");
            DispTBTNode(b->lchild);
            if (b->rchild!=NULL) printf(",");
            DispTBTNode(b->rchild);
            printf(")");
        }
    }
}

TBTNode *pre;                       //全局变量

void Thread(TBTNode *&p)
{
    if (p!=NULL)
    {
        Thread(p->lchild);          //左子树线索化
        if (p->lchild==NULL)        //前驱线索
        {
            p->lchild=pre;          //建立当前结点的前驱线索
            p->ltag=1;
        }
        else p->ltag=0;
        if (pre->rchild==NULL)      //后继线索
        {
            pre->rchild=p;          //建立前驱结点的后继线索
            pre->rtag=1;
        }
        else pre->rtag=0;
        pre=p;
        Thread(p->rchild);          //右子树线索化
    }
}

TBTNode *CreaThread(TBTNode *b)     //中序线索化二叉树
{
    TBTNode *root;
    root=(TBTNode *)malloc(sizeof(TBTNode));  //创建根结点
    root->ltag=0;
    root->rtag=1;
    root->rchild=b;
    if (b==NULL)                //空二叉树
        root->lchild=root;
    else
    {
        root->lchild=b;
        pre=root;               //pre是*p的前驱结点,供加线索用
        Thread(b);              //中序遍历线索化二叉树
        pre->rchild=root;       //最后处理,加入指向根结点的线索
        pre->rtag=1;
        root->rchild=pre;       //根结点右线索化
    }
    return root;
}

void ThInOrder(TBTNode *tb)
{
    TBTNode *p=tb->lchild;      //指向根结点
    while (p!=tb)
    {
        while (p->ltag==0) p=p->lchild;
        printf("%c ",p->data);
        while (p->rtag==1 && p->rchild!=tb)
        {
            p=p->rchild;
            printf("%c ",p->data);
        }
        p=p->rchild;
    }
}

int main()
{
    TBTNode *b,*tb;
    CreateTBTNode(b,"A(B(D(,G)),C(E,F))");
    printf(" 二叉树:");
    DispTBTNode(b);
    printf("\n");
    tb=CreaThread(b);
    printf(" 线索中序序列:");
    ThInOrder(tb);
    printf("\n");
    return 0;
}

运行结果:

 

(4)main.cpp

#include <stdio.h>
#include <string.h>

#define N 50        //叶子结点数
#define M 2*N-1     //树中结点总数

//哈夫曼树的节点结构类型
typedef struct
{
    char data;  //结点值
    double weight;  //权重
    int parent;     //双亲结点
    int lchild;     //左孩子结点
    int rchild;     //右孩子结点
} HTNode;

//每个节点哈夫曼编码的结构类型
typedef struct
{
    char cd[N]; //存放哈夫曼码
    int start;
} HCode;

//构造哈夫曼树
void CreateHT(HTNode ht[],int n)
{
    int i,k,lnode,rnode;
    double min1,min2;
    for (i=0; i<2*n-1; i++)         //所有结点的相关域置初值-1
        ht[i].parent=ht[i].lchild=ht[i].rchild=-1;
    for (i=n; i<2*n-1; i++)         //构造哈夫曼树
    {
        min1=min2=32767;            //lnode和rnode为最小权重的两个结点位置
        lnode=rnode=-1;
        for (k=0; k<=i-1; k++)
            if (ht[k].parent==-1)   //只在尚未构造二叉树的结点中查找
            {
                if (ht[k].weight<min1)
                {
                    min2=min1;
                    rnode=lnode;
                    min1=ht[k].weight;
                    lnode=k;
                }
                else if (ht[k].weight<min2)
                {
                    min2=ht[k].weight;
                    rnode=k;
                }
            }
        ht[i].weight=ht[lnode].weight+ht[rnode].weight;
        ht[i].lchild=lnode;
        ht[i].rchild=rnode;
        ht[lnode].parent=i;
        ht[rnode].parent=i;
    }
}

//实现哈夫曼编码
void CreateHCode(HTNode ht[],HCode hcd[],int n)
{
    int i,f,c;
    HCode hc;
    for (i=0; i<n; i++) //根据哈夫曼树求哈夫曼编码
    {
        hc.start=n;
        c=i;
        f=ht[i].parent;
        while (f!=-1)   //循序直到树根结点
        {
            if (ht[f].lchild==c)    //处理左孩子结点
                hc.cd[hc.start--]='0';
            else                    //处理右孩子结点
                hc.cd[hc.start--]='1';
            c=f;
            f=ht[f].parent;
        }
        hc.start++;     //start指向哈夫曼编码最开始字符
        hcd[i]=hc;
    }
}

//输出哈夫曼编码
void DispHCode(HTNode ht[],HCode hcd[],int n)
{
    int i,k;
    double sum=0,m=0;
    int j;
    printf("  输出哈夫曼编码:\n"); //输出哈夫曼编码
    for (i=0; i<n; i++)
    {
        j=0;
        printf("      %c:\t",ht[i].data);
        for (k=hcd[i].start; k<=n; k++)
        {
            printf("%c",hcd[i].cd[k]);
            j++;
        }
        m+=ht[i].weight;
        sum+=ht[i].weight*j;
        printf("\n");
    }
    printf("\n  平均长度=%g\n",1.0*sum/m);
}

int main()
{
    int n=8,i;      //n表示初始字符串的个数
    char str[]= {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'};
    double fnum[]= {0.07,0.19,0.02,0.06,0.32,0.03,0.21,0.1};
    HTNode ht[M];
    HCode hcd[N];
    for (i=0; i<n; i++)
    {
        ht[i].data=str[i];
        ht[i].weight=fnum[i];
    }
    printf("\n");
    CreateHT(ht,n);
    CreateHCode(ht,hcd,n);
    DispHCode(ht,hcd,n);
    printf("\n");
    return 0;
}

运行结果:

 

 

知识点总结:

层次遍历是运用一个环形队列储存节点的信息。

构造二叉树

1.由先序序列和中序序列构造二叉树

定理:任何n(n≥0)个不同节点的二叉树,都可由它的中序序列和先序序列唯一地确定。

  • 证明(数学归纳法)
    基础:当n=0时,二叉树为空,结论正确。
    假设:设节点数小于n的任何二叉树,都可以由其先序序列和中序序列唯一地确定。 b0b1bk1bkbk+1bn1
    归纳:已知某棵二叉树具有n(n>0)个不同节点,其先序序列是 a0~an-1;中序序列b0~bn-1
    • 先序遍历“根-左-右”, a0 必定是二叉树的根节点
    • a0 必然在中序序列中出现,设在中序序列中必有某个bk (0<=k<=n-1)   , a0就是根节点。
    • 由于bk是根节点,中序遍历“左-根-右”,故中序序列中 b0~bk-1 必是根节点 bk(a0) 左子树的中序序列,即bk 的左子树有k个节点,bk+1~bn-1 必是根节点 bk(a0) 右子树的中序序列,即bk 的右子树有n-k-1 个节点。
    • 对应先序序列,紧跟在根节点 a0 之后的k个节点a1~ak 是左子树的先序序列,ak+1~an-1 这n-k-1 就是右子树的先序序列。
    • 根据归纳假设,子先序序列a1~ak  和子中序序列b0~bk-1可以唯一地确定根节点 a0 的左子树,而先序序列ak+1~an-1 和子中序序列 bk+1~bn-1  ,可以唯一地确定根节点 a0 的右子树。
    • 综上所述,这棵二叉树的根节点己经确定,而且其左、右子树都唯一地确定了,所以整个二叉树也就唯一地确定了。

2.由后序序列和中序序列构造二叉树

  • 定理:任何n(n>0)个不同节点的二叉树,都可由它的中序序列和后序序列唯一地确定。

    中序线索树

    哈夫曼树

    运用了寻找最小的两个叶子节点的算法,来构造哈夫曼树。使其路径最短。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值