自己想不到怎么区间DP。。。
后来看的别人的….
就是统计dp[l][r][i][j] l~r区间里边l涂i色,r涂j色的方法个数
就是如果遇到匹配的括号就直接忘里边缩进一个单位
否则就将区间分为两段l~p[l],p[l]+1~r
这篇说的很详细了 ORZ http://blog.csdn.net/sdjzping/article/details/19160013
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<queue>
#include<stack>
#include<string>
#include<vector>
#include<map>
#include<set>
using namespace std;
#define rfor(i,a,b) for(i=a;i<=b;++i)
#define lfor(i,a,b) for(i=a;i>=b;--i)
#define sfor(i,a,h) for(i=h[a];i!=-1;i=e[i].next)
#define mem(a,b) memset(a,b,sizeof(a))
#define mec(a,b) memcpy(a,b,sizeof(b))
#define cheak(i) printf("%d ",i)
#define min(a,b) (a>b?b:a)
#define max(a,b) (a>b?a:b)
#define inf 0x3f3f3f3f
#define lowbit(x) (x&(-x))
typedef long long LL;
#define maxn 705
#define maxm maxn*maxn
#define lson(x) (splay[x].son[0])
#define rson(x) (splay[x].son[1])
#define mod 1000000007
LL dp[maxn][maxn][3][3];
int p[maxn],stac[maxn];
void fun(char *str,int n)
{
int i,k=0;
rfor(i,1,n)
{
if(str[i]=='(')
stac[++k]=i;
else
{
p[i]=stac[k];
p[stac[k]]=i;
k--;
}
}
}
void solve(int l,int r)
{
int i,j,k,q;
if(l>=r) return ;
if(p[l]==r)
{
if(l==r-1)
{
dp[l][r][0][1]=1;
dp[l][r][0][2]=1;
dp[l][r][1][0]=1;
dp[l][r][2][0]=1;
return ;
}
solve(l+1,r-1);
rfor(i,0,2)
rfor(j,0,2)
{
if(i!=1) dp[l][r][1][0]=(dp[l][r][1][0]+dp[l+1][r-1][i][j])%mod;
if(i!=2) dp[l][r][2][0]=(dp[l][r][2][0]+dp[l+1][r-1][i][j])%mod;
if(j!=1) dp[l][r][0][1]=(dp[l][r][0][1]+dp[l+1][r-1][i][j])%mod;
if(j!=2) dp[l][r][0][2]=(dp[l][r][0][2]+dp[l+1][r-1][i][j])%mod;
}
}
else
{
int t=p[l];
solve(l,t);
solve(t+1,r);
rfor(i,0,2)
rfor(j,0,2)
rfor(k,0,2)
rfor(q,0,2)
{
if(!(q==1&&k==1||q==2&&k==2))
dp[l][r][i][j]=(dp[l][r][i][j]+(dp[l][t][i][k]*dp[t+1][r][q][j])%mod)%mod;
}
}
}
char str[maxn];
int main()
{
scanf("%s",str+1);
int n=strlen(str+1);
fun(str,n);
mem(dp,0);
solve(1,n);
LL ans=0;
int i,j;
rfor(i,0,2)
rfor(j,0,2)
ans=(ans+dp[1][n][i][j])%mod;
printf("%lld\n",ans);
return 0;
}