矩阵基础1006 HDU 4549

题意:
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
求F(N)
思路:
没有直接构造出来矩阵,就把乘法转化成了幂的加法
然后就比较容易构造矩阵了
F(n)=F(n-1)+F(n-2)+1
注意一点是取模的时候因为是指数取模,所以MOD 1e9+6
1e9+6=phi(1e9+7) 这里是欧拉函数的知识

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<queue>
#include<stack>
#include<string>
#include<vector>
#include<map>
#include<set>
using namespace std;
#define lowbit(x) (x&(-x))
typedef long long LL;
const int maxn = 100005;
const int inf=(1<<28)-1;
#define Matrix_Size 5
const LL MOD = 1e9+6;
int Size;
struct Matrix
{
    LL mat[Matrix_Size][Matrix_Size];
    void clear()
    {
        memset(mat,0,sizeof(mat));
    }
    void output()
    {
        for(int i = 0;i < Size;i++)
        {
            for(int j = 0;j < Size;j++)
                printf("%lld ",mat[i][j]);
            printf("\n");
        }
    }
    Matrix operator *(const Matrix &b)const
    {
        Matrix ret;
        for(int i = 0;i < Size;i++)
            for(int j = 0;j < Size;j++)
            {
                ret.mat[i][j] = 0;
                for(int k = 0;k < Size;k++)
                {
                    long long tmp = (long long)mat[i][k]*b.mat[k][j]%MOD;
                    ret.mat[i][j] = (ret.mat[i][j]+tmp);
                    if(ret.mat[i][j]>=MOD)
                        ret.mat[i][j] -= MOD;
                    if(ret.mat[i][j]<0)//注意是否需要MOD 
                        ret.mat[i][j] += MOD;
                }
            }
        return ret;
    }
};
Matrix pow_M(Matrix a,long long n)
{
    Matrix ret;
    ret.clear();
    for(int i = 0;i < Size;i++)
        ret.mat[i][i] = 1;
    Matrix tmp = a;
    while(n)
    {
        if(n&1)ret = ret*tmp;
        tmp = tmp*tmp;
        n>>=1;
    }
    return ret;
}
LL quickMod(LL a,LL b,LL mod)
{
    LL res=1,tmp=a;
    while(b)
    {
        if(b&1)
            res=(res*tmp)%mod;
        tmp=(tmp*tmp)%mod;
        b/=2;
    }
    return res;
}
int main()
{
    LL a,b,n;
    while(~scanf("%lld%lld%lld",&a,&b,&n))
    {
        Size=4;
        Matrix A,B;
        A.clear(),B.clear();
        A.mat[0][0]=A.mat[0][2]=1;
        A.mat[1][1]=A.mat[1][3]=1;
        A.mat[2][0]=A.mat[3][1]=1;
        B.mat[1][0]=B.mat[2][0]=1;
        if(n==0)
        {
            printf("%lld\n",a%(MOD+1));
            continue;
        }
        if(n==1)
        {
            printf("%lld\n",b%(MOD+1));
            continue;
        }
        A=pow_M(A,n-1);
        A=A*B;
        //A.output();
        LL Ans=(quickMod(a,A.mat[0][0],MOD+1)*quickMod(b,A.mat[1][0],MOD+1))%(MOD+1);
        printf("%lld\n",Ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值