- 博客(29)
- 收藏
- 关注
原创 Python基础7 #博学谷IT学习技术支持
目录一 网络请求1 网络get请求报文格式2 网络post请求报文格式3 HTTP响应报文分析HTTP响应状态码二 HTTP静态web服务器三 FAST API1. FastAPI的安装2. FastAPI的基本使用一 网络请求1 网络get请求报文格式请求行 : 请求方式GET 请求路径 请求的协议版本。请求头:包含 Host 服务器的主机地址和端口号,User-Agent用户代理 等等。空行 : \r\n每项数据之间使用\r\
2022-11-07 18:19:06 425
原创 Python基础6 #博学谷IT学习技术支持
目录一案例3:eval()方法的使用二 python运算符案例1:了解一下算术运算符案例2:和其他编程语言不太相同的几个算术运算符案例3:求梯形面积一案例3:eval()方法的使用eval()方法的使用,把字符串中的数字转换为原数据类型price = input('请输入您购买商品的价格:')print(eval(price))print(type(eval(price)))str1 = '10' 经过eval(str1) 转换为int类型str2
2022-10-31 17:59:01 323
原创 Python基础5 #博学谷IT学习技术支持
2、浮点类型转换为整型 float => int,浮点转整型,其小数点后的数据会丢失!num = int(input('请输入您的幸运数字:'))# 数据类型转换,把str字符串类型转换为int类型。num = input('请输入您的幸运数字:')# 1、整型转浮点类型 int => float。# 3、把字符串类型转换为整型或浮点类型。
2022-10-24 18:26:48 120 1
原创 Python基础5 #博学谷IT学习技术支持
目录一 了解Python数据类型的转换方法案例1:把用户输入的幸运数字,转换为整型案例2:多种数据类型转换一 了解Python数据类型的转换方法函数 说明 ==int(x)== 将x转换为一个整数 ==float(x)== 将x转换为一个浮点数 complex(real [,imag ]) 创建一个复数,real为实部,imag为虚部 ==str(x)== 将对象 x 转换为字符串 repr(x) 将对象 x 转换为表达式字符
2022-10-23 19:51:26 190
原创 Python基础4 #博学谷IT学习技术支持
目录一 python 输入二 例题 :交换两个变量的值三 例题:使用Python实现超市的收银系统一 python 输入'''输出:print()输入:input()函数,其只需要写入一个参数,代表系统的提示信息input('提示信息')'''code = input('请输入您的交易密码:')print(type(code))小结:① input()可以用于接收由外部设备输入的信息,但是如果用户没有输入任何内容,则input()函数会中止当前代码的
2022-10-17 17:46:03 561
原创 Python基础3 #博学谷IT学习技术支持
目录格式化输出格式化输出让程序按照用户指定的格式输出。 格式符号 转换 %s 字符串 %d 有符号的十进制整数 %f 浮点数 %c 字符 %u 无符号十进制整数 %o 八进制整数 %x
2022-10-10 19:59:15 554
原创 Python基础2 #博学谷IT学习技术支持
目录1 python 快捷键2 Python 变量3 Python的数据类型4 查询变量的类型5 代码的错误1 python 快捷键2 Python 变量变量是在程序运行过程中可以发生改变的量,变量存储的数据是临时的。基本语法 : 变量名=变量的值 例如a=1,b=2。注意变量的变量名有命名规则。不能与 Python的关键词一致。标识符命名规则,也是Python中定义变量名称时的一种命名规范,具体如下,由数字,字母,下划线组成。不能以数
2022-10-03 17:53:26 209
原创 Python基础1 #博学谷IT学习技术支持
目录一 Python概述二 Python2 和Python3 版本对比三 Python解析器四 pycharm开发利器五 Python中的注释一 Python概述Python是一种跨平台的计算机程序设计语言,是一个高层次的,结合了解释性,编译性,互动性和面向对象的脚本语言。跨平台: 一般公司的项目会在Linux系统运行,但是我们可能会在Windows或者mac os操作系统上写代码。我们写的代码可以直接迁移到Linux系统上运行。二 Python2 和Pyth
2022-09-26 18:09:34 191
原创 前向概率 维特比算法 条件随机场 #博学谷IT学习技术支持#
因为命名实体识别 用的条件随机场模型,需要用到句子当中的 每个字 与他的前后 字的关系。在从中找到这五个结果的最大的概率,就把它投影为相应的标签,就可以了。找出最后一个时刻的状态的概率最大值 对应的状态。每个时刻,每个状态的概率计算公式为 前一时刻的初始概率乘以转移概率,再乘以当前时刻的初始概率。以 隐马尔可夫模型 为例,t时刻的概率,取决于t-1时刻的概率,和t-1时刻到t时刻的转移概率。假设每个时刻的状态与他的前后时刻的状态都有关。以 之前的 把句子中的每个字 应设为状态列表中的某个状态 为例。
2022-09-22 15:28:42 205
原创 隐马尔可夫模型 #博学谷IT学习技术支持#
一、隐马尔可夫模型HMM1 隐马尔可夫模型 Hidden Markov Model(HMM) 的假设,对于两个时序序列联合分部 p(x,y),x序列,外界可见,称为观测序列,y序列外,外界不可见,称为状态序列。以 更高地举起邓小平理论伟大旗帜 为例,更高地举起邓小平理论伟大旗帜,就是观测序列。每个字对应的状态,组成的序列,就是状态序列。以SBME序列标注 为例,S 代表single,单独的意思。B是begin开始一个分词的开始。M是middle在分词的中间部分。E是end结尾代表分词的结
2022-09-12 21:07:50 101
原创 注意力机制 #博学谷IT学习技术支持#
因为q=k=v,假设q是4×5的张量,先计算qx k的转置,得到wij'矩阵,也就是输入张量和输入张量之间相似度的矩阵,此时的矩阵的值是在负无穷到正无穷之间。得到wij矩阵,再用wij矩阵,乘以v,等到最后的输出张量矩阵。他需要三个指定的输入query,key,value,然后通过计算公式得到注意力的结果。1 注意力权重的计算方法不同,注意力机制对输入的关注度是平等的,而自注意力机制对输入的关注度是有侧重的。4 注意力机制,关注整体和部分之间的关系,自注意力机制,关注 整体之间的关系。
2022-09-08 19:06:09 649
原创 周杰伦歌词预测 #博学谷IT学习技术支持#
目录一、目标二、思路1 构建词料库 1.1数据清洗 1.2 构建分词到索引的映射表2 构建数据集对象2.1 创建一个歌词类2.2 构建数据集3 构建网络模型4 构建训练函数4.1 创建训练数据集4.2 初始化网络模型4.3 构建损失函数4.4 选择优化方法4.4 确定训练轮数4.5 保存训练模型5 构建预测函数5.1 把输入的开始词,先转化为索引向量一、目标相当于我们在音乐播放器里面搜索。歌词里面的几个字...
2022-08-29 17:54:32 289
原创 RNN #博学谷IT学习技术支持#
一、RNN模型简介1定义 Rnn, recurrent neural network,循环神经网络,一般以序列数据(比如,一句话,一段录音)为输入, 通过网络内部的结构有效捕捉 序列之间的关系特征,一般也是以序列系列形式输出。2 网络结构一般是单层神经网络结构,Rnn的循环机制,使得模型也从上一时间步产生的结果 h(t-1),能够作为当下时间步输入的一部分。也就是当下时间不输入有两部分,一个是正常的输入 x(t),另一个是h(t-1)。3 模型的作用R能很好的利用训练之间的关
2022-08-22 17:50:55 234
原创 金融风控 #博学谷IT学习技术支持#
目录一、金融风控处理步骤二、特征处理一、金融风控处理步骤1 导入库,加载数据集2 指定不参与训练的列名,和参与训练的列名3 选择开发样本,验证样本,时间外样本4 查看数据缺失值,类型和情况5 特征筛选单特征筛选方法: 缺失率,Iv值,PSI值,相关性。通过设置缺失率值,psi值和相关性的 不同阈值,选择特征。多特征筛选方法: 星座图,Boruta,方差膨胀系数,L1正则化,递归特征删除。Iv值反应特征区分度的能力。Iv值越大,区分度越大。说明该特征越有用。.
2022-08-15 17:47:05 339
原创 金融风控 #博学谷IT学习技术支持#
提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码如下(示例):import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as snsimport warningswarnings.filterwarnings('ig...
2022-08-08 18:01:54 62
原创 机器学习总结3 #博学谷IT学习技术支持#
目录七、CART 分类决策树1. Cart树简介2. 基尼指数计算公式3. 基尼指数计算举例3.1 是否有房4. Cart分类树原理七、CART 分类决策树1. Cart树简介 CART 决策树 定义: 使用基尼指数构建的决策树成为 CART 决策树Cart模型是一种决策树模型,它即可以用于分类,也可以用于回归,其学习算法分为下面两步:(1)决策树生成:用训练数据生成决策树,生成树尽可能大(2)决策树剪枝:基于损失函数最小化的剪枝,用验证数据对生...
2022-08-01 17:51:30 143
原创 机器学习总结2 #博学谷IT学习技术支持#
目录五 ID3决策树1 信息熵2 信息增益六、C4.5 决策树1. 信息增益率计算公式2. 信息增益率计算举例五 ID3决策树ID3 决策树 定义:使用信息增益构建的决策树成为 ID3 决策树1 信息熵信息熵,代表随机变量不确定度的度量。信息熵越大,不确定性越高,信息熵越小,不确定性越低。2 信息增益信息增益,表示由于特征a使得对于数据集D的分类不确定性减少程度,可以理解为贡献。A,对于数据的分类贡献越大。那么信息增益就越大,选择信息增益最大的特征..
2022-07-25 19:20:33 394
原创 机器学习总结1 #博学谷IT学习技术支持#
目录一、K近邻 KNN二、线性回归三、逻辑回归四、决策树一、K近邻 KNN1 K近邻算法是一个分类算法。 算法实现步骤,先选出一个k值,计算一个新的样本点,到,所有已知样本点的距离。找出其中最近的k个距离,用着k个最相邻的样本点,对新的样本点进行投票。票最多的那个标签就是这个新的样本点的标签。 K值的选择,可以通过交叉验证法网格搜索。Grid SearchCV, 分类评估方法,通过计算准确率来评估,accuracy_score二...
2022-07-18 17:58:15 189
原创 K 近邻算法原理 #博学谷IT学习技术支持#
目录一、KNN二、kNN举例一、KNNKNN是监督学习分类算法,主要解决现实生活中分类问题。算法的思想:通过K个最近的已知分类的样本来判断未知样本的类别根据目标的不同将监督学习任务分为了分类学习及回归预测问题。监督学习任务的基本流程和架构:(1)首先准备数据,可以是视频、音频、文本、图片等等(2)抽取所需要的一些列特征,形成特征向量(Feature Vectors)(3)将这些特征向量连同标记(Label)一并送入机器学习算法中,训练出一个预测模型(Predic...
2022-07-12 11:55:57 68
原创 无监督学习 半监督学习 #博学谷IT学习技术支持#
目录一、无监督学习2.1 聚类问题2.2 数据降维二、半监督学习一、无监督学习通俗地讲:非监督学习(unsupervised learning)指的是人们给机器一大堆没有分类标记的数据,让机器可以对数据分类、检测异常等。2.1 聚类问题聚类是一种探索性数据分析技术,在没有任何相关先验信息的情况下(相当于不清楚数据的信息),它可以帮助我们将数据划分为有意义的小的组别(也叫簇cluster)。其中每个簇内部成员之间有一定的相似度,簇之间有较大的不同。这也正是聚类作为无监督学习的.
2022-07-04 19:13:14 435
原创 机器学习分类 #博学谷IT学习技术支持#
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、监督学习1.1分类问题1.2回归问题总结前言随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的分类。一、监督学习监督学习指的是人们给机器一大堆标记好的数据,比如:一大堆照片,标记出哪些是猫的照片,哪些是狗的照片 让机器自己学习归纳出算法或模型 使用该算法或模型判断出其他没有标记的照片是否是猫或狗...
2022-06-27 17:47:48 242
原创 机器学习 #博学谷IT学习技术支持#
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、机器学习二、机器学习概念1.基于规则的学习2.基于模型的学习总结前言例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。一、机器学习机器学习是研究如何使计算机能够模拟或实现人类的学习功能,从大量的数据中发现规律,提取知识,并在实践中不断地完善和增强自我。机器学习是机器获取知识的根本途...
2022-06-20 17:47:09 120
原创 Pandas Series DataFrame #博学谷IT学习技术支持#
一、Series的布尔索引从Series中获取满足某些条件的数据,可以使用布尔索引,从Series中获取部分数据,可以通过标签,索引,也可以传入布尔值的列表二、Series 的运算Series和数值型变量计算时,变量会与Series中的每个元素逐一进行计算两个Series之间进行计算,会根据索引进行。索引不同的元素最终计算的结果会填充成缺失值,用NaN表示三、DataFrameDataFrame是Pandas中最常见的对象,Series数据结构的许多属性和方法在DataF
2022-06-13 17:53:56 91
原创 Pandas Series #博学谷IT学习技术支持#
一 Pandas最基本的两种数据结构。1 Series 用来处理单列数据或者一维数组。 Series是一维容器,表示DataFrame的每一列或每一行。Series 每个素的数据类型必须相同。如果数据类型不统一,dtype的打印结果是object。 2 DataFrame 用来处理结构化数据,例如SQL数据表,excel表格。......
2022-06-06 17:51:35 193
原创 机器学习,深度学习,环境搭建 #博学谷IT学习技术支持#
一 Anaconda 1Anaconda环境搭建 Anaconda 是最流行的数据分析平台。,附带了一非常用数据科学包,是在conda(一个包管理器和环境管理器。)上发展出来的。包含了虚拟环境管理工具,通过虚拟环境可以使不同的Python或者开源库的版本,同时存在。它可以用于多个平台Windows,Mac OS X和Linux。 可以在官网上下载对应平台的安装包,安装过程很简单,一路下一步。Linux下安装。先上传文件。通过ls命令查找上传的文件,来确认是否已经上传。添加可执行权限...
2022-05-30 17:48:01 263
原创 Linux mysql #博学谷IT学习技术支持#
一 Linux软件安装1 rpm离线软件包管理器,专门用来管理Linux各项软件包的程序。 rpm查询是否有tree 安装包: rpm -qa 丨grep tree 卸载包 rpm -e --nodeps 包名称, 安装包 rpm -ivh 包名称 rz指令,上传,可以把Windows下的2 yum在线安装软件包 ...
2022-05-23 20:27:03 75
原创 Linux #博学谷IT学习技术支持#
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言提示:以下是本篇文章正文内容,下面案例可供参考一、二、1.引入库2.读入数据总结...
2022-05-19 12:23:23 113
原创 python基础,模块。对象
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、可变类型,非可变类型二、使用步骤1.引入库2.读入数据总结前言python基础学习分享 #博学谷IT学习技术支持#例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、可变类型,非可变类型python中,一般,变量中存储的是地址,通过地址,访问数据可变类型:数值,字符串,布尔值,元组.
2022-05-15 09:25:58 240
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人