- 博客(171)
- 资源 (3)
- 收藏
- 关注
原创 T08_对抗网络
生成对抗网络包含了两个子网络:生成网络(Generator,简称G)和判别网络(Discriminator,简称D),其中生成网络 G 负责学习样本的真实分布,判别网络 D 负责将生成网络采样的样本与真实样本区分开来。
2025-09-18 12:32:10
920
原创 T07_自编码器
自编码器算法就是属于自监督学习(无监督学习的一种)ofθxx∈Rdino∈Rdoutdin是输入的特征向量长度,dout是网络输出向量的长度。对于分类问题,网络模型通过把长度为din输入特征向量x变换到长度为dout的输出向量o,这个过程可以看成是特征降维的过程,把原始的高维输入向量x变换到低维的变量o。
2025-09-11 16:08:14
857
原创 T06_RNN示例
以IMDB影评数据为例,加载评论读取影评数据处理数据,testData数据需要将评分提取处理来,然后将大于等于7的设置为积极表示,最后将评论中的<br />替换掉。
2025-09-05 13:37:02
590
原创 T06_循环神经网络
卷积神经网络利用数据的局部相关性和权值共享的思想大大减少了网络的参数量,非常适合于图片这种具有空间(Spatial)局部相关性的数据已经被成功地应用到计算机视觉领域的一系列任务上。自然界的信号除了具有空间维度之外,还有一个时间(Temporal)维度。具有时间维度的信号非常常见,比如正在阅读的文本、说话时发出的语音信号等。
2025-08-29 12:28:45
679
原创 T05_卷积示例
''':param filter_num 卷积核数量:param stride 步长 默认是1'''# 卷积单元1# 卷积单元2if stride!=1: # 通过1x1卷积完成shape匹配else: # shape匹配,直接短接# [b,h,w,c] 通过第一个卷积单元# 通过第二个卷积单元# 通过identity模块# 根网络,预处理])# 堆叠4个Block,每个block包含了多个BasicBlock,设置步长不一样。
2025-08-21 17:27:09
978
原创 T05_卷积神经网络
以MINST数字识别为例,创建一个4层全连接网络层,输入为28x28,中间三个隐藏层的节点数都是 256,输出节点数是10。通过summary()函数打印出模型每一层的参数量,计算总的参数量超过34万个网络参数,单个权值保存为 float 类型的变量,网络参数至少需要约 1.34MB 内存。训练过程中占用内存超过2GB(未使用GPU),训练时长超过5分钟(个人笔记本,ADM R7系列)。随着图片的尺寸增加,网络层增加,训练占用的内存、时长会暴增。下面是几种如何避免全连接网络的参数量过大的缺陷的方法。
2025-08-14 18:00:02
790
原创 T04_过拟合示例
在模型全连接层之间中增加一层:model.add(layers.Dropout(rate=0.5)),不再举例了。继承keras.callbacks.Callback,来实现当loss不在降低时,停止训练。训练集有60000张图片,按照常规比例,划分25%的数据(15000张)作为验证集。callbacks设置回调函数,在每轮训练结束后判断是否要结束训练。validation_data 参数指定验证数据集。
2025-08-07 12:23:52
330
原创 T04_过拟合
通俗地讲,模型的容量或表达能力,是指模型拟合复杂函数的能力。一种体现模型容量的指标为模型的假设空间(Hypothesis Space)大小,即模型可以表示的函数集的大小。当模型的表达能力偏弱时,比如单一线性层,它只能学习到线性模型,无法良好地逼近非线性模型;但模型的表达能力过强时,它就有可能把训练集的噪声模态也学到,导致在测试集上面表现不佳的现象(泛化能力偏弱)。因此针对不同的任务,设计合适容量的模型算法才能取得较好的泛化性能。在有限的计算资源的约束下,较大的假设空间并不一定能搜索出更好的函数模型。
2025-08-07 08:07:29
614
原创 T03_Keras高级接口
对于需要创建自定义逻辑的网络层,可以通过自定义类来实现。在创建自定义网络层类时,需要继承自 layers.Layer 基类;创建自定义的网络类时,需要继承自 keras.Model 基类,这样建立的自定义类才能够方便的利用 Layer/Model 基类提供的参数管理等功能,同时也能够与其他的标准网络层类交互使用。至少需要实现初始化__init__方法和前向传播逻辑 call 方法。''':param inp_dim 输入特征的长度:param out_dim 输出特征的长度'''
2025-08-04 08:00:53
238
原创 T03_Keras示例(MINST)
网上下载的资源是train-images-idx3-ubyte数据,需要解析成图片加载图片,制作dataset,由于图片的名称是按照一定格式命名的(train_index_no.jpg),直接从文件名中获取label可以简单验证一下创建dataset自定义网络定义网络层定义model模型训练与保存测试可视化模型训练时,将训练的参数保存到日志中启动tensorboard,指定路径根据提示,在浏览器中输入地址打开即可
2025-07-31 12:18:29
265
原创 T02_反向传播示例
''':param n_input : 输入节点数:param n_neurons : 输出节点数:param activation : 激活函数:param weights : 权值张量,默认类内部生成:param bias : 偏执,默认类内部生成'''return rreturn rreturn r。
2025-07-22 18:24:34
296
原创 T02反向传播算法
导数(Derivative)的概念:自变量x产生一个微小变动Δx,函数输出值的增量Δy于自变量增量Δx的比值在Δx趋近于0时的极限a,如果存在,a即为x0处的导数。实际上,导数是一个非常宽泛的概念,只是因为以前接触到的函数大多是一元函数,当函数的自变量数大于一个时,函数的导数概念拓展为函数值沿着任意∆Δx方向的变化率。导数本身是标量,没有方向,但是导数表征了函数值在某个方向Δx的上变化率。在这些任意Δx。
2025-07-19 11:34:57
1066
原创 T01_神经网络示例
换句话说,一个epoch意味着训练数据集中的每个样本都有机会更新模型的内部参数。epochs的值过小也会导致模型精度差,通常,epoch数量越多,模型在训练数据上的性能越好,但也可能导致过拟合。上例中的batch_size是经过多次尝试,找到了一个相对好的值,如果值太大,模型精度明显很差。较小的batch size可以使模型更快地更新参数,但可能会导致不稳定的梯度下降。简单数据(例如鸢尾花的例子,数据样本很少,特性也很少),可以直接使用numpy类型的数据(上例也可以用pandas作为训练数据)
2025-07-10 11:44:18
382
原创 sklearn总结
Python机器学习基础教程》是一本值得一读的好书,书中不仅仅讲算法(也不将数学作为重点),而是通过 scikit-learn 库系统的讲述了处理机器学习问题的步骤(特征工程》模型训练》模型评估)。scikit-learn是一个开源的机器学习库,致力于提供简单而高效的工具(高度统计的算法接口,各种数据处理脚手架)。
2025-07-02 17:52:39
893
原创 16_集成学习
集成学习通过组合多个模型预测来提升性能,主要包括Bagging、Boosting和Stacking三大类。Bagging(如随机森林)通过自助采样训练多个模型并投票/平均结果,适用于高方差模型。Boosting(如XGBoost、LightGBM)通过序列化训练和加权投票逐步修正误差,适合弱学习器。Stacking则结合不同基学习器的输出训练元模型,复杂度较高但潜力大。
2025-06-19 08:20:40
609
原创 11_数据表示与特征工程
对于某个特定应用来说,如何找到最佳数据表示,这个问题被称为特征工程(feature engineering)它是数据科学家和机器学习从业者在尝试解决现实世界问题时的主要任务之一。用正确的方式表示数据,对监督模型性能的影响比所选择的精确参数还要大。
2025-06-09 13:07:49
809
原创 10_聚类
本文介绍了两种常用的聚类方法:K均值聚类和凝聚聚类。K均值聚类通过迭代寻找簇中心,适合处理凸形数据,但对复杂形状效果较差。凝聚聚类则通过合并相似簇实现聚类,提供了ward、average、complete和single四种链接策略,其中single策略能更好处理非凸形状数据。两种方法各有优势:K均值简单高效但依赖初始化和簇数设定,凝聚聚类能处理更复杂结构但计算成本较高。文章通过可视化对比了不同方法在各类数据集上的表现,并分析了其适用场景和局限性。
2025-06-05 11:27:23
1107
原创 13_pandas可视化_Matplotlib
matplotlib是python可视化非常重要的基础库,虽然seaborn很好用,但实际应用中发现seaborn无法满足一些场景,还是要回到matplotlib来。
2025-06-03 18:29:28
782
原创 07_分类器不确定评估
scikit-learn中有两个函数可以用于获取分类器的不确定度估计:descision_function和predic_proba。大多数分类器都至少有其中一个函数,多分类器两个都有。
2025-05-23 16:58:35
973
原创 06_神经网络
神经网络的主要优点是能够获取大量数据中包含的信息,并构建无比复杂的模型。给定足够的计算时间和数据,并且仔细调节参数,神经网络通常能打败其他机器学习算法。
2025-05-22 13:00:13
715
原创 03_朴素贝叶斯分类
朴素贝叶斯分类器与线性模型非常相似的一种分类器,但它的训练速度往往更快。这种高效率所付出的代价是,朴素贝叶斯模型的泛化能力要比线性分类器(如LogisticRegression 和 LinearSVC)稍差。
2025-05-14 15:08:28
698
原创 02_线性模型(回归分类模型)
许多线性分类模型只适用于二分类问题,不能轻易推广到多类别问题(除了 Logistic 回归)。将二分类算法推广到多分类算法的一种常见方法是“一对其余”(one-vs.-rest)方法。
2025-05-12 13:14:01
1194
原创 02_线性模型(回归线性模型)
线性回归是回归问题最简单也最经典的线性方法。线性回归寻找参数 w 和 b,使得对训练集的预测值与真实的回归目标值 y之间的均方误差最小
2025-05-09 17:33:45
1029
原创 13_pandas可视化_plotly_express
把Pandas的版本降下来就可以了:pip install pandas==1.5.3 -i https://pypi.tuna.tsinghua.edu.cn/simple。参数hostnorm可以设置纵轴数据分布展示方式,其值可以是’percent’,‘probability’,‘density’,‘probability density’px.imshow()可以用来绘制热力图。x = ‘total_bill’ 指定直方图的x轴取值。nbins 参数设置分箱数据量。也可以单独设置x、或y。
2025-04-10 13:29:00
674
原创 13_pandas可视化_seaborn
熟悉seaborn的基本绘图接口。详细教程参看https://seaborn.org.cn/tutorial.html
2025-04-02 12:53:01
706
Qt MinGW环境下chromium内核的使用
2024-11-28
H-ui.admin_v3.0.
2018-03-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人