文章目录
HDP内存配置设置方法
可以使用两种方法来确定YARN和MapReduce内存配置设置:
1.手动计算YARN和MapReduce内存配置设置.
2.使用HDP Utility脚本计算内存配置设置.
HDP实用程序脚本是计算HDP内存配置设置的推荐方法,但也提供了有关手动计算YARN和MapReduce内存配置设置的信息以供参考。
1.1手动计算YARN和MapReduce内存配置设置
本节介绍如何根据节点硬件规范手动配置YARN和MapReduce内存分配设置。
YARN会考虑群集中每台计算机上的所有可用计算资源。根据可用资源,YARN协商来自群集中运行的应用程序(例如MapReduce)的资源请求。然后,YARN通过分配容器为每个应用程序提供处理能力。Container是YARN中处理能力的基本单位,是资源元素(内存,cpu等)的封装。
在Hadoop集群中,平衡内存(RAM),处理器(CPU内核)和磁盘的使用至关重要,这样处理不受这些集群资源中的任何一个的限制。作为一般建议,允许每个磁盘和每个核心使用两个Container,从而为群集利用率提供最佳平衡。
在为群集节点确定适当的YARN和MapReduce内存配置时,请从可用的硬件资源开始。具体来说,请注意每个节点上的以下值:
-
RAM(内存量)
-
CORES(CPU内核数)
-
磁盘(磁盘数)
YARN和MapReduce的总可用RAM应考虑保留内存。Reserved Memory是系统进程和其他Hadoop进程(例如HBase)所需的RAM。
注:保留内存=为堆栈内存保留+为HBase内存保留(如果HBase在同一节点上)
使用下表确定每个节点的预留内存。
内存分配建议
每个节点的总内存 | 推荐的预留系统内存 | 推荐的预留Hbase内存 |
---|---|---|
4GB | 1 GB | 1 GB |
8 GB | 2 GB | 1 GB |
16 GB | 2 GB | 2 GB |
24 GB | 4 GB | 4 GB |
48 GB | 6 GB | 8 GB |
64 GB | 8 GB | 8 GB |
72 GB | 8 GB | 8 GB |
96 GB | 12 GB | 16 GB |
128 GB | 24 GB | 24 GB |
256 GB | 32 GB | 32 GB |
512 GB | 64 GB | 64 GB |
确定每个节点允许的最大容器数。可以使用以下公式:
containers= min(2 * CORES,1.8 * DISKS,(总可用RAM)/ MIN_CONTAINER_SIZE)
其中MIN_CONTAINER_SIZE是最小容器大小(在RAM中)。此值取决于可用的RAM量 -在较小的内存节点中,最小容器大小也应该更小。下表概述了建议值: