HDP内存配置设置方法

本文介绍了HDP中手动和使用脚本计算YARN和MapReduce内存配置的方法。手动计算涉及考虑节点的硬件资源,如RAM、CPU和磁盘,以及预留内存。HDP Utility脚本是推荐的计算方式,能自动生成配置建议。文章通过实例详细阐述了配置过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HDP内存配置设置方法

可以使用两种方法来确定YARN和MapReduce内存配置设置:

  1.手动计算YARN和MapReduce内存配置设置.

  2.使用HDP Utility脚本计算内存配置设置.

HDP实用程序脚本是计算HDP内存配置设置的推荐方法,但也提供了有关手动计算YARN和MapReduce内存配置设置的信息以供参考。

1.1手动计算YARN和MapReduce内存配置设置

本节介绍如何根据节点硬件规范手动配置YARN和MapReduce内存分配设置。

YARN会考虑群集中每台计算机上的所有可用计算资源。根据可用资源,YARN协商来自群集中运行的应用程序(例如MapReduce)的资源请求。然后,YARN通过分配容器为每个应用程序提供处理能力。Container是YARN中处理能力的基本单位,是资源元素(内存,cpu等)的封装。

在Hadoop集群中,平衡内存(RAM),处理器(CPU内核)和磁盘的使用至关重要,这样处理不受这些集群资源中的任何一个的限制。作为一般建议,允许每个磁盘和每个核心使用两个Container,从而为群集利用率提供最佳平衡。

在为群集节点确定适当的YARN和MapReduce内存配置时,请从可用的硬件资源开始。具体来说,请注意每个节点上的以下值:

  • RAM(内存量)

  • CORES(CPU内核数)

  • 磁盘(磁盘数)

YARN和MapReduce的总可用RAM应考虑保留内存。Reserved Memory是系统进程和其他Hadoop进程(例如HBase)所需的RAM。

注:保留内存=为堆栈内存保留+为HBase内存保留(如果HBase在同一节点上)

使用下表确定每个节点的预留内存。

内存分配建议

每个节点的总内存 推荐的预留系统内存 推荐的预留Hbase内存
4GB 1 GB 1 GB
8 GB 2 GB 1 GB
16 GB 2 GB 2 GB
24 GB 4 GB 4 GB
48 GB 6 GB 8 GB
64 GB 8 GB 8 GB
72 GB 8 GB 8 GB
96 GB 12 GB 16 GB
128 GB 24 GB 24 GB
256 GB 32 GB 32 GB
512 GB 64 GB 64 GB

确定每个节点允许的最大容器数。可以使用以下公式:

containers= min(2 * CORES,1.8 * DISKS,(总可用RAM)/ MIN_CONTAINER_SIZE)

其中MIN_CONTAINER_SIZE是最小容器大小(在RAM中)。此值取决于可用的RAM量 -在较小的内存节点中,最小容器大小也应该更小。下表概述了建议值:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jarvis数据之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值