生成器验证数学表达式
"""
验证 (1 + 2 + 3 + 4 + 5 + ...) ^ 2 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + ...
# 分别用生成器 生成 左边 1次方 和右边 3次方 的sum
"""
def generator(k):
i = 1
while True:
yield i ** k
i += 1
gen_1 = generator(1)
gen_3 = generator(3)
print(gen_1) # 生成器 :I 的 1次方
print(gen_3) # 生成器 :I 的 3次方
def get_sum(n):
sum_1, sum_3 = 0, 0
for i in range(n):
next_1 = next(gen_1) # 返回 gen_1 的yield i ** 1
next_3 = next(gen_3) # 返回 gen_3 的yield i ** 3
print('next_1 = {}, next_3 = {}'.format(next_1, next_3))
sum_1 += next_1 # sum_1 :1 + 2 + 3 + 4 + 5 + ...
sum_3 += next_3 # sum_3 :1^3 + 2^3 + 3^3 + 4^3 + 5^3 + ...
print(sum_1 * sum_1, sum_3)
# (1 + 2 + 3 + 4 + 5 + ...) ^ 2 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + ...
get_sum(8)
<generator object generator at 0x00000136B1370A98>
<generator object generator at 0x00000136B1546C00>
next_1 = 1, next_3 = 1
next_1 = 2, next_3 = 8
next_1 = 3, next_3 = 27
next_1 = 4, next_3 = 64
next_1 = 5, next_3 = 125
next_1 = 6, next_3 = 216
next_1 = 7, next_3 = 343
next_1 = 8, next_3 = 512
1296 1296
-
迭代器:
1 通过 next 方法 ,调用这个方法后,要么得到这个容器的下一个对象,要么返回 StopIteration 的错误2 next 函数 可以一个一个拿到所有的元素
3 除了数字 ,字符串、list列表 、 set 集合、 dict 字典、tuple元组 都是可迭代对象
-
生成器:
1 若一个函数中有yield关键字,那这个函数就是一个generator。并且其执行流程和普通的函数有区别。generator每次调用next才运行,遇到yield关键字返回。再次执行next,又返回上次yield的位置接着执行。生成器 通过 yield 暂停,跳到 next 函数 将 yield 表达式作为 next 函数的返回值2 这里 生成器 gen_1 和 gen_3 每被调用一次 ,各自的局部变量 i 自增1 ,注意 for 中每次都重新调用了一次 gen
3 当 next 被调用的时候, 生成器可以生成无数个元素
生成器和迭代器的内存占用
import os
import psutil
# 显示当前 python 程序占用的内存大小
def show_memory_info(hint):
pid = os.getpid()
p = psutil.Process(pid)
info = p.memory_full_info()
memory = info.uss / 1024. / 1024
print('{} memory used: {} MB'.format(hint, memory))
def test_iterator():
show_memory_info('initing iterator')
list_1 = [i for i in range(100000000)]
show_memory_info('after iterator initiated')
print(sum(list_1))
show_memory_info('after sum called')
def test_generator():
show_memory_info('initing generator')
list_2 = (i for i in range(100000000))
show_memory_info('after generator initiated')
print(sum(list_2))
show_memory_info('after sum called')
test_iterator()
test_generator()
initing iterator memory used: 8.6796875 MB
after iterator initiated memory used: 1835.44140625 MB
4999999950000000
after sum called memory used: 2648.34765625 MB
initing generator memory used: 2.39453125 MB
after generator initiated memory used: 2.4140625 MB
4999999950000000
after sum called memory used: 2.4375 MB
生成器并不会一次产生1亿个元素占用内存,他保存的仅仅是生产1亿个元素的 算法,当调用的时候,才会生成,所以占用内存少,而List的所有元素都会存在内存中,在海量数据场景下,会占用大量的内存。
本文探讨了生成器和迭代器在Python中的应用,通过一个数学表达式的验证案例,展示了生成器在处理大量数据时的内存优势。同时,通过实验比较了生成器和列表在内存占用上的显著差异。

被折叠的 条评论
为什么被折叠?



