Python 中的 迭代器 和 生成器

本文探讨了生成器和迭代器在Python中的应用,通过一个数学表达式的验证案例,展示了生成器在处理大量数据时的内存优势。同时,通过实验比较了生成器和列表在内存占用上的显著差异。
生成器验证数学表达式
"""
验证 (1 + 2 + 3 + 4 + 5 + ...) ^ 2 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + ...
# 分别用生成器 生成 左边 1次方  和右边 3次方 的sum
"""




def generator(k):
    i = 1
    while True:
        yield i ** k
        i += 1




gen_1 = generator(1)
gen_3 = generator(3)
print(gen_1)  # 生成器 :I 的 1次方
print(gen_3)  # 生成器 :I 的 3次方




def get_sum(n):
    sum_1, sum_3 = 0, 0
    for i in range(n):
        next_1 = next(gen_1)  # 返回 gen_1 的yield i ** 1
        next_3 = next(gen_3)  # 返回 gen_3 的yield i ** 3
        print('next_1 = {}, next_3 = {}'.format(next_1, next_3))
        sum_1 += next_1  # sum_1 :1 + 2 + 3 + 4 + 5 + ...
        sum_3 += next_3  # sum_3 :1^3 + 2^3 + 3^3 + 4^3 + 5^3 + ...
    print(sum_1 * sum_1, sum_3)
    # (1 + 2 + 3 + 4 + 5 + ...) ^ 2 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + ...




get_sum(8)




<generator object generator at 0x00000136B1370A98>
<generator object generator at 0x00000136B1546C00>
next_1 = 1, next_3 = 1
next_1 = 2, next_3 = 8
next_1 = 3, next_3 = 27
next_1 = 4, next_3 = 64
next_1 = 5, next_3 = 125
next_1 = 6, next_3 = 216
next_1 = 7, next_3 = 343
next_1 = 8, next_3 = 512
1296 1296
  • 迭代器:
    1 通过 next 方法 ,调用这个方法后,要么得到这个容器的下一个对象,要么返回 StopIteration 的错误

    2 next 函数 可以一个一个拿到所有的元素

    3 除了数字 ,字符串、list列表 、 set 集合、 dict 字典、tuple元组 都是可迭代对象

  • 生成器:
    1 若一个函数中有yield关键字,那这个函数就是一个 generator 。并且其执行流程和普通的函数有区别。generator每次调用 next 才运行,遇到yield关键字返回。再次执行next,又返回上次yield的位置接着执行。生成器 通过 yield 暂停,跳到 next 函数 将 yield 表达式作为 next 函数的返回值

    2 这里 生成器 gen_1 和 gen_3 每被调用一次 ,各自的局部变量 i 自增1 ,注意 for 中每次都重新调用了一次 gen

    3 当 next 被调用的时候, 生成器可以生成无数个元素

生成器和迭代器的内存占用
import os
import psutil




# 显示当前 python 程序占用的内存大小
def show_memory_info(hint):
    pid = os.getpid()
    p = psutil.Process(pid)


    info = p.memory_full_info()
    memory = info.uss / 1024. / 1024
    print('{} memory used: {} MB'.format(hint, memory))




def test_iterator():
    show_memory_info('initing iterator')
    list_1 = [i for i in range(100000000)]
    show_memory_info('after iterator initiated')
    print(sum(list_1))
    show_memory_info('after sum called')




def test_generator():
    show_memory_info('initing generator')
    list_2 = (i for i in range(100000000))
    show_memory_info('after generator initiated')
    print(sum(list_2))
    show_memory_info('after sum called')




test_iterator()
test_generator()




initing iterator memory used: 8.6796875 MB
after iterator initiated memory used: 1835.44140625 MB
4999999950000000
after sum called memory used: 2648.34765625 MB
initing generator memory used: 2.39453125 MB
after generator initiated memory used: 2.4140625 MB
4999999950000000
after sum called memory used: 2.4375 MB

生成器并不会一次产生1亿个元素占用内存,他保存的仅仅是生产1亿个元素的 算法,当调用的时候,才会生成,所以占用内存少,而List的所有元素都会存在内存中,在海量数据场景下,会占用大量的内存。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值