leetcode--第5章--树-5.1二叉树的遍历--5.1.1 binary tree preorder traversal

排序算法专栏可参考:

http://blog.csdn.net/column/details/15766.html

树及二叉树的基础知识补充:

数据结构、算法与应用 C++语言描述 P270

问题描述:

Given a binary tree, return the preorder traversal of its nodes' values.

For example:
Given binary tree {1,#,2,3},

   1
    \
     2
    /
   3

return [1,2,3].

Note: Recursive(递归) solution is trivial, could you do it iteratively(迭代)?


问题一:递归  迭代

递归

#include <iostream>
using namespace std;

void Recursion(int depth){
cout << "抱着"<<endl;
if (!depth) cout<<"我的小鲤鱼"<<endl;
else Recursion(--depth);
cout << "的我" << endl;
}

int main(){
cout << "吓得我抱起了" << endl;
Recursion(2);
putchar('\n');
}


迭代

「递归」和「迭代」有哪些区别?

// 迭代,重复一定的算法,达到想要的目的。

//递归,自身调用自身的迭代就是递归。


问题二 如何初始化二叉树?

问题:

给定二叉树的初始化数据,怎样动态建立一个二叉树呢?

比如我们给定这样的一组数据:{ 1, 2, 3, 4, 0, 5, 6, 0, 7 }(假设0代表空),则我们构建的二叉树是这样的:

     1
    / \
   2   3
  /   / \
 4   5  6
  \
   7

思路分析:

我们可以使用一个队列,队首出一个元素,队尾进两个元素,而这两个元素正好是这个队首元素的左右节点。

----这种 利用队列的方法初始化二叉树的方法 没毛病!

#pragma once 的具体作用

1、编译器预编译命令
2、命令内容显而易见:仅编译一次
3、用途:常出现在头文件中。因为同一头文件会在许多源文件中多次引用。如果没有指定编译一次,则编译时出现重定义错误。
4、相同作用命令
#ifndef    ABC_H
#define    ABC_H

解答及测试代码:

tree.h

#pragma once
#include <iostream>
#include <vector>
#include <queue>   //队列
using namespace std;

//definition for binary tree
struct TreeNode{
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) :val(x), left(nullptr), right(nullptr){}
};


//初始化一个二叉树
TreeNode* initBTree(int elements[], int size);


树的前序遍历
//void preOrder(TreeNode *root, vector<int> &result);
//
树的中序遍历
//void inOrder(TreeNode *root, vector<int> &result);
//
树的后序遍历
//void postOrder(TreeNode *root, vector<int> &result);
//
//vector的遍历
void traverse(vector<int> nums);


test.cpp

#include "tree.h"
#include <stack>
#include <iostream>
#include <vector>
#include <queue>   //队列

TreeNode* initBTree(int elements[], int size){
if (size < 1){
return nullptr;
}
//动态申请size大小的指针数组
TreeNode **nodes = new TreeNode*[size];  //首先是数组,所以返回的是数组地址nodes,然后呢,数组元素还是指针
//将int数据转换成TreeNode节点
for (int i = 0; i < size; i++){
if (elements[i] == 0){
//if (!isalnum(elements[i])){
nodes[i] = nullptr; //一个非零数对应一个节点,节点以地址表示
}
else{
nodes[i] = new TreeNode(elements[i]);  //动态申请
}
}

queue<TreeNode*> nodeQueue;  //搞一个队列
nodeQueue.push(nodes[0]);  //在队尾压入队列

TreeNode *node;   //临时节点
int index = 1;    //索引为1
while (index < size){
node = nodeQueue.front();   //返回队列头元素
nodeQueue.pop();    //删除队列首元素
nodeQueue.push(nodes[index++]);  //在队尾压入元素,作为左节点
node->left = nodeQueue.back(); //返回队列尾元素
nodeQueue.push(nodes[index++]);  //在队尾再压入元素,作为右节点
node->right = nodeQueue.back(); //返回队列尾元素
}
return nodes[0];
}


void traverse(vector<int> nums)
{
   vector<int>::size_type size = nums.size();
   for (int i = 0; i < size; i++)
   {
       cout << nums[i] << ' ';
   }
   cout << endl;
}


class Solution{
public:
vector<int> preorderTraversal(TreeNode *root){   //输入是根节点
vector<int> result;
stack<const TreeNode *> s;  //栈的类型是指针,存放的是指针
if (root != nullptr) s.push(root); //压入栈顶

while (!s.empty()){     //只要这个堆栈不为空,这个是利用迭代,而不是递归
const TreeNode *p = s.top();   //把栈顶元素给它
s.pop();    //弹出栈顶元素
result.push_back(p->val);     //把栈顶节点的数据值赋给这个向量

if (p->right != nullptr) s.push(p->right);  //右子树节点地址压入堆栈
if (p->left != nullptr) s.push(p->left);  //左子树节点地址压入堆栈,注意了,这个地方是后进先出,所以right先进,没毛病
}
return result;
}
};

int main(){
int nums[] = { 1, 2, 3, 4, 0, 5, 6, 0, 7 };
TreeNode *root = initBTree(nums, 9);
Solution mySolution;
vector<int> preResult = mySolution.preorderTraversal(root);
//前序遍历的结果
cout << "前序遍历的结果" << '\n';
traverse(preResult);
return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值