Kafka概念
一个Topic0可以有多个partition(partition0,partition1…partition N)
一个topic的多个partition可以在一个broker上
Kafka集群最少3个KafKaServer,也就是3个broker
一个Topic0消息分别保存在3个broker
Topic0-partition0分别保存在3个broker,由1个leader和2个follower组成,2个人follower为副本
Topic0-partition0-leader负责Topic0-partition0的数据的读写
broker
Kafka 集群包含一个或多个服务器,服务器节点称为broker。
broker存储topic的数据。
如果某topic有N个partition,集群有N个broker,那么每个broker存储该topic的一个partition。
如果某topic有N个partition,集群有(N+M)个broker,那么其中有N个broker存储该topic的一个partition,剩下的M个broker不存储该topic的partition数据。
如果某topic有N个partition,集群中broker数目少于N个,那么一个broker存储该topic的一个或多个partition。
在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致Kafka集群数据不均衡。
Topic
每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)
Topic类似于数据库的表名
Partition
topic中的数据分割为一个或多个partition。
每个topic至少有一个partition。
每个partition中的数据使用多个segment文件存储。
partition中的数据是有序的,不同partition间的数据丢失了数据的顺序。
如果topic有多个partition,消费数据时就不能保证数据的顺序。
在需要严格保证消息的消费顺序的场景下,需要将partition数目设为1
Producer
生产者即数据的发布者,该角色将消息发布到Kafka的topic中。
broker接收到生产者发送的消息后,broker将该消息追加到当前用于追加数据的segment文件中。
生产者发送的消息,存储到一个partition中,生产者也可以指定数据存储的partition
Consumer
消费者可以从broker中读取数据。消费者可以消费多个topic中的数据。
Consumer Group
每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。
Leader
每个partition有多个副本,其中有且仅有一个作为Leader,Leader是当前负责数据的读写的partition。
Follower
Follower跟随Leader,所有写请求都通过Leader路由,数据变更会广播给所有Follower,Follower与Leader保持数据同步。
如果Leader失效,则从Follower中选举出一个新的Leader。
当Follower与Leader挂掉、卡住或者同步太慢,leader会把这个follower从“in sync replicas”(ISR)列表中删除,重新创建一个Follower。