Lesson2 Liner Regression with multiple variables(多变量的线性回归)

Multiple Features(多特征)

x_{j}^{(i)}是指训练集中第i个训练样本的第j个特征(标量);x^{(i)}是训练集中第i个输入特征(向量)。

Example:

x^{(2)}=\begin{bmatrix} 1416\\ 3\\ 2\\ 40 \end{bmatrix},x_{3}^{(2)}=2

Hypothesis:

以前:h\theta (x)=\theta _{0}+\theta _{1}x

现在:h\theta (x)=\theta _{0}+\theta _{1}x_{1}+\theta _{2}*x_{2}+...+\theta _{n}x_{n}

定义x_{0}=1,(x_{0}^{(i)}=1),

x=\begin{bmatrix} x_{0}\\ x_{1}\\ x_{2}\\ ...\\ x_{n} \end{bmatrix} \epsilon R^{n+1},\theta \epsilon R^{n+1}

h_{\theta }(x)=\theta _{0}+\theta _{1}x_{1}+...+\theta _{n}x_{n}=\theta ^{T}x

代价函数(cost function):

J(\theta _{0},\theta _{1},...,\theta _{n})=\frac{1}{2m}\sum_{i=1}^{m}(h_{\theta }(x^{(i)})-y^{(i)})^2

梯队下降法(Gradient descent):

以前:\theta _{0}:=\theta _{0}-\alpha \frac{1}{m} \sum_{i=1}^{m}(h_{\theta }(x^{(i)})-y^{(i)}) ,\theta _{1}:=\theta _{1}-\alpha \frac{1}{m} \sum_{i=1}^{m}(h_{\theta }(x^{(i)})-y^{(i)})x^{(i)}(n=1)

现在:\theta _{j}:=\theta _{j}-\alpha \frac{1}{m}\sum_{i=1}^{m}(h_{\theta }(x^{(i)})-y^{(i)})x_{j}^{(i)}(n>=1)  -->多元线性回归的梯度下降算法

特征缩放(feature scaling):

idea(实现思想):使不同特征缩小至相近范围

让每一个特征缩小至统一相近范围:一般减去平均值然后除以标准差或最大最小值之差(均值归一化)

均值归一化(mean normalization):

x_{i}-u_{i}替代x_{i},这样特征值就具有为0的平均值(tips:不将此实施在x_{0}=1)

学习率\alpha

在选择\alpha取值:...,0.001,0.003,0.01,0.03,0.1,0.3,1,...

Polynomial regression(多项式回归):

tips:注意归一化

normal equation(正规方程):

这是一个求解\theta的解析算法,对比梯度下降法,可以一次性求解\theta的最优值。

注意(x^{T}x)不一定可逆(奇异或退化矩阵),matlab/octave使用pvin()函数可能求解的是伪逆矩阵。

 

对不可逆情况的处理:找到无关的多余特征并删除,这将解决不可逆问题。

 

 

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值