BlendGAN火了 ,一键cosplay各种动漫!

点击 机器学习算法与Python学习选择加星标

精彩内容不迷路a2b538d857ded3b82455cb2272bb3415.gif量子位 报道 | 公众号 QbitAI

本文介绍的是来自快手的BlendGAN,而且这项工作还被顶会NeurIPS 2021接收。

80a66268f144126c77b7d6e207a4588f.png

论文地址:https://arxiv.org/pdf/2110.11728.pdf

很简单,只需要准备2张照片:

  • 一张生活照

  • 一张动漫人物造型

e05008bbbbdcead7be16f6dd14be366e.png

现在在Hugging Face里已经有了在线可玩的demo。(https://huggingface.co/spaces/akhaliq/BlendGAN)

最简单的办法就是把这两张照片上传进去,等待一会儿就可以出结果了。

就在这两天,BlendGAN在GitHub上也已开源。

73df1703005d6f6488c018eb198c2e44.png

github地址:https://github.com/onion-liu/BlendGAN

首先需要下载一些预训练模型,包括BlendGAN模型、PSP编码器模型和Style编码器模型。

0f59ad8f5363b90b6bc02a75e22e6b8e.png

然后仅需几句Python代码,便可出效果。

例如用随机人脸代码生成图像对,就输入:

python generate_image_pairs.py --size 1024 --pics N_PICS --ckpt ./pretrained_models/blendgan.pt --style_img ./test_imgs/style_imgs/100036.png --outdir results/generated_pairs/reference_guided/

若是要给照片换风格,则输入:

python style_transfer_folder.py --size 1024 --ckpt ./pretrained_models/blendgan.pt --psp_encoder_ckpt ./pretrained_models/psp_encoder.pt --style_img_path ./test_imgs/style_imgs/ --input_img_path ./test_imgs/face_imgs/ --outdir results/style_transfer/

要生成插值视频,则:

python gen_video.py --size 1024 --ckpt ./pretrained_models/blendgan.pt --psp_encoder_ckpt ./pretrained_models/psp_encoder.pt --style_img_path ./test_imgs/style_imgs/ --input_img_path ./test_imgs/face_imgs/ --outdir results/inter_videos/

为什么可以hold住任意风格?

据研究介绍,团队首先是利用灵活的混合策略和通用的艺术数据集,来生成任意样式化的脸。

具体来说,就是在通用艺术数据集上,训练一个自监督Style编码器来提取任意样式的表示。

a0e5f9e4f0f961df0755f19cff87a68c.png

在生成器部分,则提出了一种叫做加权混合模块 (WBM)的方法,来隐式混合人脸和样式表示,并控制任意的程式化效果。

5ceb3a98116ffabdcc3118a3f1b67130.png

以往诸如StyleGAN2在这个步骤中,不同分辨率层(resolution layer)负责生成图像中的不同特征,而团队认为它们在不同层的混合权值不应当是一致的。

因此,研究人员将人脸和风格latent代码转换到它们的W空间,然后再由WBM进行一个组合的工作。

由此得到的结果显示,与以往方法比较,BlendGAN能够得到更加逼真的效果。

2a21a79068e5591ace453c0fc8e0888f.png

最后,想试试变妆的小伙伴,可以戳下方链接体验一下~   

在线试玩:https://huggingface.co/spaces/akhaliq/BlendGAN

福利时间

奖品:5本《机器学习算法入门与编程实践(基于Python•微课视频版)》

  • 对机器学习算法的基本原理和Python程序实现进行系统的介绍,每种算法都采用sklearn程序实现并用Matplotlib进行数据可视化。为了帮助读者更加高效、直观地学习,作者为本书录制了11个微课教学视频,读者可以用手机扫描书中的二维码进行在线观看,也可以将视频下载后再观看。

  • 共8章,包括机器学习概述、Python机器学习与可视化、关联规则与推荐算法、聚类、分类、回归与逻辑回归、人工神经网络、支持向量机。

参与方式:本文文末留言,随便聊,留言最走心的5位小伙伴分别送一本机器学习算法入门;

开奖时间:2021年12月13号12点(如有问题可联系小助手wx:MLAPython

PS:感谢机械工业出版社~2a7d541cbecdf64d626888a669fcd497.png

觉得不错,请点个在看呀
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值