
机器学习
文章平均质量分 88
qq_28168421
更多精彩内容,请关注公众号《机器学习算法与Python学习》
展开
-
12521 Star!Python学习的必备法宝,随查随用,太方便了吧
(给机器学习算法与Python学习加星标,提升AI技能)开源最前线(ID:OpenSourceTop)综合整理项目地址:https://github.com/gto76/python...原创 2020-04-22 10:30:00 · 400 阅读 · 0 评论 -
真·干货!标星1.3k的网红深度学习教程,由浅入深,适合深度学习新手
HyperDL-Tutorial 是一个深度学习相关的系列文章,总结了在深度学习实践中的一些经验。今天分享给大家的是一份GitHub标星1.3k+的深度学习教程,号称是理论与实践的完美...原创 2020-04-07 16:46:00 · 387 阅读 · 0 评论 -
高斯混合模型及代码实现
通过学习概率密度函数的Gaussian Mixture Model (GMM) 与 k-means 类似,不过 GMM 除了用在 clustering 上之外,还经常被用于 density estimation。对于二者的区别而言简单地说,k-means 的结果是每个数据点被 assign 到其中某一个 cluster ,而 GMM 则给出这些数据点被 assign 到每个 cluster 的概率。原创 2017-03-23 13:58:27 · 6102 阅读 · 0 评论 -
基于Python-ChatterBot搭建不同adapter的聊天机器人(使用NB进行场景分类)
chatterbot是一款python接口的,基于一系列规则和机器学习算法完成的聊天机器人。具有结构清晰,可扩展性好,简单实用的特点。本文通过chatterbot 的不同adapter来介绍如何构建自己的聊天机器人,关与chatterbot详细资料请请阅读源码,纯Python写的,阅读性比较强。好啦,我就直接上代码了。PS:现在正在收集语料库,过段时间更新基于深度循环网络LSTM的带有记忆的ChatBot。安装原创 2017-05-03 11:13:19 · 9261 阅读 · 2 评论 -
干货分享 | 最新机器学习视频教程与数据集下载(持续更新......)
微信公众号关键字全网搜索最新排名【机器学习算法】:排名第一【机器学习】:排名第二【Python】:排名第三【算法】:排名第四公告520新一波教程资料免费下载1. 超大数据集(360.25G)链接:http://pan.baidu.com/s/1jHTR9U原创 2017-05-22 10:58:53 · 6918 阅读 · 1 评论 -
数据集
数据集大数据https://delicious.com/pskomoroch/dataset http://stackoverflow.com/questions/10843892/download-large-data-for-hadoophttp://konect.uni-koblenz.de/搜狗实验室http://www.sogou.com/labs/resources.html?v=1气原创 2017-09-04 12:47:59 · 5003 阅读 · 1 评论 -
距离度量完整版
距离度量距离度量常见距离与相似度度量欧氏距离闵可夫斯基距离马氏距离互信息余弦相似度皮尔逊相关系数Jaccard相关系数概率分布的距离度量KL散度JS距离MMD距离Principal angleHSICEarth Mover’s DistanceReferences常见距离与相似度度量欧氏距离定义在两个向量(两...原创 2018-07-18 14:29:30 · 3846 阅读 · 0 评论 -
机器学习教程资源
闲话不多说,直接上干货~以下课程均有中文字幕:1.机器学习机器学习视频我推荐大神Andrew Ng的课程:https://www.coursera.org/learn/machine-learning/home/welcomeAndrew Ng的课程有两个版本,一个是斯坦福大学的公开课,一个是coursera上的课程。我更建议后者。首先是在couresa上讲,Andrew Ng面对的是所有在线的听...转载 2018-07-06 17:45:07 · 1329 阅读 · 0 评论 -
220页深度神经网络基础、理论与挑战PPT【下载】
本教程来自在德国慕尼黑举办的ECCV 2018中,日本东北大学(Tohoku University)的Dr. M. Ozay 和Dr. L. Huang教授关于深度神经网络数学基础与理论、挑战的演讲教程,欢迎查阅! 下载方式关注公众号,后台回复20180912 ...原创 2018-09-12 15:08:00 · 536 阅读 · 0 评论 -
机器学习备忘录,源自Stanford - CS229
项目:stanford-cs-229-machine-learning作者:afshinea简介:一个备忘录对经典的斯坦福 CS229 课程进行了总结,内容包括监督学习、无监督学习,以及进修所用的概率与统计、线性代数与微积分等知识。GitHub【点击阅读原文即可访问】:https://github.com/afshinea/stanford-cs-229-machine-learn...原创 2019-04-04 16:28:02 · 880 阅读 · 0 评论 -
搞人工智能的大家都关注了!!
I'M 阿曼,机器学习算法与Python学习【ID:guodongwei2019】公众号的运营小编~作为沟通学习的平台,发布机器学习与数据挖掘、深度学习、Python实战的前沿与动态,欢迎机器学习爱好者的加入,希望帮助你在AI领域更好的发展,期待与你相遇!这里不仅有经典算法的总结,还有大量的学习资料,欢迎关注我们吆添加小助手微信(MLAPython),备注(姓名-单位/学校-研究方向,...原创 2019-03-12 20:57:19 · 952 阅读 · 0 评论 -
机器学习与大数据面试问题与答题思路
如今,好多机器学习、数据挖掘的知识都逐渐成为常识,要想在竞争中脱颖而出,就必须做到: 保持学习热情,关心热点; 深入学习,会用,也要理解; 在实战中历练总结; 积极参加学术界、业界的讲座分享,向牛人学习,与他人讨论。 最后,希望自己的求职季经验总结能给大家带来有益的启发。原创 2017-03-22 19:47:14 · 1501 阅读 · 0 评论 -
解决样本不平衡问题
样本不平衡会导致出现以下的问题:(1)少数类所包含的信息很有限,难以确定少数类数据的分布,即难以在内部挖掘规律,造成少数类的识别率低;(2)很多分类算法采用分治法,样本空间的逐渐划分会导致数据碎片问题,这样只能在各个独立的子空间中寻找数据的规律,对于少数类来说每个子空间中包含了很少的数据信息,一些跨空间的数据规律就不能被挖掘出来。(3)不恰当的归纳偏置系统在存在不确定时往往倾向于把样本原创 2017-03-22 19:45:31 · 1732 阅读 · 0 评论 -
机器学习常用术语,加油充电专用。。。。。
总结了机器学习中所用常用的术语,看看你会那些原创 2017-03-22 19:44:06 · 601 阅读 · 0 评论 -
python机器学习库(不断更新)
这些年来,接触和使用了很多Python工具包,特别是在文本处理,科学计算,机器学习和数据挖掘领域,有很多很多优秀的Python工具包可供使用,所以作为Pythoner,也是相当幸福的.转载 2016-12-03 10:49:24 · 1616 阅读 · 0 评论 -
决策树过拟合问题的解决思路
本文章介绍决策树学习的实际问题包括确定决策树增长的深度;处理连续值的属性;选择一个适当的属性筛选度量标准;处理属性值不完整的训练数据;处理不同代价的属性;以及提高计算效率。下面我们讨论每一个问题,并针对这些问题扩展基本的ID3算法。事实上,为了解决其中多数的问题, ID3算法已经被扩展了,扩展后的系统被改名为C4.5(Quinlan 1993).原创 2016-12-04 20:13:07 · 31127 阅读 · 0 评论 -
稀疏化鲁棒最小二乘支持向量机与多目标遗传优化
本文给出了一种基于稀疏化鲁棒最小二乘支持向量机与多目标遗传参数优化的铁水[Si]动态软测量建模方法。首先,针对标准LS-SVR的拉格朗日乘子与误差项成正比导致最终解缺少稀疏性的问题,提取样本数据在特征空间映射集的极大无关组来实现训练样本集的稀疏化,降低建模的计算复杂度;其次,针对标准LS-SVR 的目标函数没有正则化项、鲁棒性差的问题,将IGGIII 权函数引入稀疏化后的S-LS-SVR 模型,进行鲁棒性改进,得到鲁棒性较强的R-S-LS-SVR 模型;最后,针对常规均方根误差评价模型性能的不足,提出从建模原创 2016-12-07 08:56:07 · 3762 阅读 · 2 评论 -
趣味理解朴素贝叶斯
生活中很多场合需要用到分类,比如新闻分类、病人分类等等实际用用场景。为了让大家可以形象的理解,本文从实际的应用入手介绍一种简单的常用分类算法----朴素贝叶斯(Navie Bayes classifier)。转载 2016-12-13 09:05:07 · 1681 阅读 · 0 评论 -
多层神经网络与反向传播算法
如感知机详解中所论述的那样,单个感知器仅能表示线性决策面。相反,反向传播算法所学习的多层网络能够表示种类繁多的非线性曲面。如图1所示,该图描述了一个典型的多层网络和它的决策曲面。这个语音识别任务要区分出现在“h_d”上下文中的10种元音(例如,“hid”,“had”,“head”,“hood”等)。输入的语音信号用两个参数表示,它们是通过对声音的频谱分析得到的,这样我们可以方便地在二维实例空间中显示出决策面。如图可见,多层网络能够表示高度非线性的决策面,它比单个单元的线性决策面表征能力更强。原创 2016-12-08 18:17:16 · 7490 阅读 · 0 评论 -
集成学习综述
机器学习方法在生产、科研和生活中有着广泛应用,而集成学习则是机器学习的首要热门方向。集成学习是使用一系列学习器进行学习,并使用某种规则把各个学习结果进行整合从而获得比单个学习器更好的学习效果的一种机器学习方法。本文章是对分类的集成学习(图1所示)的概念以及一些主要的集成学习方法的简介。图1 分类器的集成学习Ensemble Learning---集成学习,相关的有多模型系统原创 2016-11-27 15:25:57 · 2973 阅读 · 1 评论 -
机器学习公众号推荐
公众号名:机器学习算法与Python学习微信号:guodongwe1991二维码:定位:本公众号作为沟通学习的平台,不定期发布人工智能、机器学习、深度学习及Python编程方面的算法与实现,欢迎广大机器学习与数据挖掘领域的朋友加入交流与学习!原创 2016-12-28 17:08:02 · 1791 阅读 · 0 评论 -
特征学习
如果已经有一个足够强大的机器学习算法,为了获得更好的性能,最靠谱的方法之一是给这个算法以更多的数据。机器学习界甚至有个说法:“有时候胜出者并非有最好的算法,而是有更多的数据”。原创 2017-02-21 14:42:12 · 2684 阅读 · 0 评论 -
突发|百度首席科学家吴恩达巡捕离职百度
目前任职百度首席科学家、领导百度的人工智能研究的吴恩达刚在 Medium 上发布了一份公开信,称将会辞去在百度的工作。翻译 2017-03-22 19:41:55 · 489 阅读 · 0 评论 -
机器学习资料整理(欢迎补充)
本博文所整理的机器学习书籍来自于博主平时的积累的一些资料,可能还有一些经典的机器学习书籍为包含其中,欢迎大家留言区补充,分享给大家。(关注公众号:机器学习算法与Python学习,在后台回复关键字“书籍”可免费获得本文所列机器学习书籍的下载链接 )原创 2016-12-10 19:20:59 · 1116 阅读 · 0 评论