翻译整理自:arxiv 2306.11025.pdf
概述
本文提出了一项利用大语言模型(LLMs)出色的知识和推理能力进行可 解释金融时间序列预测的新研究。将机器学习模型应用于金融时间序 列带来了几个挑战,包括跨序列推理和推理的困难,从历史新闻、金 融知识图谱等纳入多模态信号的障碍,以及解释和解释模型结果的问 题。本文以纳斯达克-100股票为研究对象,利用公开可获取的历史股 价数据、公司元数据和历史经济/金融新闻。我们进行了实验,以说明 LLMs在为上述挑战提供统一解决方案方面的潜力。我们的实验包括尝 试使用GPT-4进行零射击/少射击推理,以及使用公共LLM模型Open LLaMA进行基于指令的微调。证明了所提出方法的性能优于一些基线, 包括广泛应用的经典ARMA-GARCH模型和梯度提升树模型。通过性 能比较结果和一些例子,我们发现LLM可以通过对文本新闻和价格时 间序列的信息进行推理并提取见解、利用交叉序列信息以及利用嵌入 LLM中的固有知识来做出深思熟虑的决策。此外,我们表明,公开可 用的LLM,如Open-LLaMA,经过微调后,可以理解指令,生成可解 释的预测并达到合理的性能,尽管与GPT-4相比相对较差。
方法
在本研究中,我们将重点放在NASDAQ-100股票价格时间序列 上,辅以有关股票公司的元数据和有关特定股票和更广泛的金 融/经济格局的相关金融新闻数据。我们主要关注的是预测每周/每月的股票收益(定义为股票价格从一周/月的开始到结 束的百分比变化),并附带解释。这个重点与大型语言模型(法学 硕士)的专业知识非常一致。 我们展示了法学硕士的结构化提示设计,并将最先进的GPT4模型[44]应用于零弹和少弹推理任务。为了进行微调,我们使 用公开可用的Open LLaMA[18]。我们还采用了思维链(Chain