利用大模型进行法律判决预测


概述

本文研究背景是法律专业人员常用的演绎推理方法,即法律演绎,用于案例分析。

过去的方法主要是通过学习、微调或示例来教授大型语言模型(LLM)进行法律判决预测。这些方法存在的问题是学习样本有限,解释性差。因此,本文提出了面向法律判决预测的简单提示方法——法律演绎提示(LoT),使模型能够根据法律大前提、事实小前提以及结论进行演绎推理并给出判决,无需学习、微调或示例。

本文提出的研究方法是使用法律演绎提示教授LLMs进行法律判决预测。该方法使模型能够集中于与判决相关的关键信息,并正确理解行为的法律含义。

本文在中国刑事案例数据集CAIL2018上对GPT-3模型进行了零-shot判决预测实验。实验结果表明,使用法律演绎提示的LLMs相比于基准方法和思维链提示(目前的最先进提示方法)在多样化的推理任务上实现了更好的性能。法律演绎提示使模型能够预测判决,同时附带法律条文和解释,显著提高了模型的可解释性。

497650e3dec97e04d8cc7595198837eb.jpeg91a68f8f630b35c73966561d827e0740.jpeg

重要问题探讨

1. 为什么当前的法律判决预测模型缺乏可解释性?

○ 当前的法律判决预测模型仅提供最终的判决结果,但缺乏提供法律推理过程的中间步骤。

○ 这限制了模型的可解释性,因为判断的依据无法被

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值