R软件做线性回归分析

本文详细介绍了如何使用R软件进行线性回归分析,包括数据探索、建模和模型检验。通过分析内置数据集swiss,进行了缺失值、异常值、相关性分析,并运用lm函数建立回归模型,通过逐步回归优化模型。最后,对模型进行拟合优度、显著性、残差正态性、异方差性和自相关性检验,确保模型的有效性和可靠性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

做回归的一般步骤为:

1、确定回归方程中的解释变量和被解释变量

2、确定回归模型

通过观察散点图确定是建立线性回归模型还是非线性回归模型

3、建立回归模型

4、对回归方程进行各种检验

5、利用回归方程进行预测


下面就对线性回归模型的建立进行详细的阐述

一、获取数据
R软件里面有很内置的数据集,用data()函数可以查看到各种数据集
这里我们使用的是R软件自带的swiss数据集,这个数据集记录了瑞典1888年的生产力和其他各个社会经济指标的数据

 

首先对该数据集进行一个初步的了解


由运行结果可知该数据集有47行6列,每个变量都是数值型的

 

二、数据探索

1、数据质量分析
(1)缺失值分析:查看数据集中包含缺失值的记录数  sum(!com

### PyCharm 打开文件显示全的解决方案 当遇到PyCharm打开文件显示全的情况时,可以尝试以下几种方法来解决问题。 #### 方法一:清理缓存并重启IDE 有时IDE内部缓存可能导致文件加载异常。通过清除缓存再启动程序能够有效改善此状况。具体操作路径为`File -> Invalidate Caches / Restart...`,之后按照提示完成相应动作即可[^1]。 #### 方法二:调整编辑器字体设置 如果是因为字体原因造成的内容显示问题,则可以通过修改编辑区内的文字样式来进行修复。进入`Settings/Preferences | Editor | Font`选项卡内更改合适的字号大小以及启用抗锯齿功能等参数配置[^2]。 #### 方法三:检查项目结构配置 对于某些特定场景下的源码视图缺失现象,可能是由于当前工作空间未能正确识别全部模块所引起。此时应该核查Project Structure的Content Roots设定项是否涵盖了整个工程根目录;必要时可手动添加遗漏部分,并保存变更生效[^3]。 ```python # 示例代码用于展示如何获取当前项目的根路径,在实际应用中可根据需求调用该函数辅助排查问题 import os def get_project_root(): current_file = os.path.abspath(__file__) project_dir = os.path.dirname(current_file) while not os.path.exists(os.path.join(project_dir, '.idea')): parent_dir = os.path.dirname(project_dir) if parent_dir == project_dir: break project_dir = parent_dir return project_dir print(f"Current Project Root Directory is {get_project_root()}") ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值