题干
在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
示例:
现有矩阵 matrix 如下:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
给定 target = 5,返回 true。
给定 target = 20,返回 false。
限制:
0 <= n <= 1000
0 <= m <= 1000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/er-wei-shu-zu-zhong-de-cha-zhao-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
第一个错误思路
一开始拿到这个题目,我首先想到的是从左上角最小的数字开始,首先完成对第一行数字的检索,能够先锁定比target大的列j,然后再在j-1列中排查是否有等于target的行i,确定target是否存在于matrix中。
这个思路错误在:
- 没有考虑数组为空的情况。应该加上error capture
- 没有考虑target如果所在的位置于最右列,那样存在在检索第一行时,无法先锁定比target大的列的情况,直接返回false
第二个错误思路
参考了结题区一些大佬的帖子之后,我选择从右上角的数字开始检索,首先完成对第一行数字的检索,锁定比target小的列j,然后再在j列中排查是否有等于target的行i,确定target是否存在于matrix中。
这个思路的错误在:
- 从一开始就审题错误,题干中只提到每一行数字递增,每一列数字递增,并没有前一列的数字一定比后一列的数字小的条件。所以在锁定比target小的列j,并不能保证target不出现在前几列中(枉我一开始还以为阶梯型和直角型的路径计算度是一样的)
正解
正解的思路应该是从右上角开始(也可以从左下角开始),逐次比较matrix中的数值与target的大小。在matrix中,从右到左是递减,从上到下是递增,当数值>target时,则最后一列中将不会存在=target的数值,删除最后一列,即i-1;当数值<target时,则第一行中将不会存在=target的数值,删除第一行,即j+1,以此类推……
正解代码附下,当然这个解题思路也是参考了解答区的:
class Solution:
def findNumberIn2DArray(self, matrix: List[List[int]], target: int) -> bool:
try:
i = len(matrix[0]) - 1
j = 0
while i >= 0 and j < len(matrix):
if matrix[j][i] > target:
i = i - 1
elif matrix[j][i] < target:
j = j + 1
else:
return True
return False
except IndexError:
return False