Python数据分析——数据分析与挖掘相关模块

相关模块简介

1、numpy  可以高效处理数据、提供数组支持,是很多模块的依赖,比如pandas、scipy、matplotlib都依赖这个模块,所以这个模块是基础

2、pandas  用的最多的一个模块,主要用于进行数据探索可数据分析

3、matplotlib作图模块,解决可视化的问题

4、scipy  主要进行数值计算,同时支持矩阵运算,并提供了很多高等数据处理功能,比如积分、傅里叶变换、微分方程求解等等

5、statsmodels  这个模块主要用于统计分析

6、Gensim  这个模块主要用于文本挖掘

7、sklearn、keras  前者机器学习,后者深度学习

相关模块的安装与技巧

模块的安装顺序与方式建议:

numpy、mkl  下载安装   是很多模块的基础  建议这两个同时安装

pandas  网络安装

matplotlib  网络安装

scipy  下载安装

statsmodels  网络安装

Gensim  网络安装

相关模块的基本使用

使用numpy创建一维数组

import numpy
# 创建一维数组的格式
# numpy.array([元素1,元素2,元素n])
x = numpy.array(['a','9','x','5'])
print(x)
print(type(x))

运行结果:

['a' '9' 'x' '5']
<class 'numpy.ndarray'>

使用numpy创建二维数组

# 创建二维数组的格式
# numpy.array([[],[],[],...[]])
x = numpy.array([['a','b','c'],['1','2','3']])
print(x)
print(type(x))

运行结果:

[['a' 'b' 'c']
 ['1' '2' '3']]
<class 'numpy.ndarray'>

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

General_单刀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值