相关模块简介
1、numpy 可以高效处理数据、提供数组支持,是很多模块的依赖,比如pandas、scipy、matplotlib都依赖这个模块,所以这个模块是基础
2、pandas 用的最多的一个模块,主要用于进行数据探索可数据分析
3、matplotlib作图模块,解决可视化的问题
4、scipy 主要进行数值计算,同时支持矩阵运算,并提供了很多高等数据处理功能,比如积分、傅里叶变换、微分方程求解等等
5、statsmodels 这个模块主要用于统计分析
6、Gensim 这个模块主要用于文本挖掘
7、sklearn、keras 前者机器学习,后者深度学习
相关模块的安装与技巧
模块的安装顺序与方式建议:
numpy、mkl 下载安装 是很多模块的基础 建议这两个同时安装
pandas 网络安装
matplotlib 网络安装
scipy 下载安装
statsmodels 网络安装
Gensim 网络安装
相关模块的基本使用
使用numpy创建一维数组
import numpy
# 创建一维数组的格式
# numpy.array([元素1,元素2,元素n])
x = numpy.array(['a','9','x','5'])
print(x)
print(type(x))
运行结果:
['a' '9' 'x' '5']
<class 'numpy.ndarray'>
使用numpy创建二维数组
# 创建二维数组的格式
# numpy.array([[],[],[],...[]])
x = numpy.array([['a','b','c'],['1','2','3']])
print(x)
print(type(x))
运行结果:
[['a' 'b' 'c']
['1' '2' '3']]
<class 'numpy.ndarray'>