把平常遇到过的一些数学定理归类总结一下,建立一个学习库,加油!
贝祖定理
裴蜀定理(或贝祖定理)得名于法国数学家艾蒂安·裴蜀,说明了
对任何整数a、b和它们的最大公约数d,关于未知数x和y的线性不定方程(称为裴蜀等式):若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。
它的一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1.
例题:水壶问题
约瑟夫环
约瑟夫问题是个著名的问题:N个人围成一圈,第一个人从1开始报数,报M的将被杀掉,下一个人接着从1开始报。如此反复,最后剩下一个,求最后的胜利者。
详情看约瑟夫环——公式法(递推公式)
解题题目:面试题62. 圆圈中最后剩下的数字
逐位相加
让我们逐位将数字加在一起。举一个例子,如果要计算 123 与 912 的和。我们顺次计算 3+2、2+1、1+9。任何时候,当加法的结果大于等于 10,我们要将进位的 1 加入下一位的计算中去,所以最终结果等于 1035。
变化:
我们可以对以上的想法做一个小变化,让它实现起来更容易 —— 我们将整个加数加入数组表示的数的最低位。
继续之前的例子 123+912,我们把它表示成 [1,2,3+912]。然后,我们计算 3+912=915。5 留在当前这一位,将 910/10=91以进位的形式加入下一位。
然后,我们再重复这个过程,计算 [1,2+91,5]。我们得到 93,3 留在当前位,将 90/10=9以进位的形式加入下一位。继而又得到 [1+9,3,5],重复这个过程之后,最终得到结果 [1,0,3,5]。
LeetCode JAVA解题—989. 数组形式的整数加法
四平方和定理(Bachet 猜想)
1770 年,Joseph Louis Lagrange证明了一个定理,称为四平方和定理,也称为 Bachet 猜想,它指出每个自然数都可以表示为四个整数平方和:
p =