第二章 感知机
误分类的损失函数
梯度下降法对损失函数进行极小化
感知机模型
f(x)=sign(w·x+b)
感知机学习算法
输入:训练数据集T= {(x1,y1),(x2,y2),...,(xn,yn)},yi属于Y={-1,+1},学习率$(0<$<=1)
输出:w,b,感知机模型f(x)=sign(w·x+b)
(1) 取初值w0 = 0,b0 = 0
(2) 随机取训练数据集的数据(xi,yi)
(3) 若yi(w0·xi+b0)<=0
w<----w0+$·yi·xi
b<----b0+$·yi
(4)转至(2),直至训练集中没有误分类点