统计学习方法---感知机

第二章 感知机

 误分类的损失函数

梯度下降法对损失函数进行极小化


感知机模型

f(x)=sign(w·x+b)

感知机学习算法

输入:训练数据集T= {(x1,y1),(x2,y2),...,(xn,yn)},yi属于Y={-1,+1},学习率$(0<$<=1)

输出:w,b,感知机模型f(x)=sign(w·x+b)

(1) 取初值w0 = 0,b0 = 0

(2) 随机取训练数据集的数据(xi,yi)

(3) 若yi(w0·xi+b0)<=0

        w<----w0+$·yi·xi

        b<----b0+$·yi

(4)转至(2),直至训练集中没有误分类点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值