322. Coin Change

You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.

Example 1:
coins = [1, 2, 5], amount = 11
return 3 (11 = 5 + 5 + 1)

Example 2:
coins = [2], amount = 3
return -1.

Note:
You may assume that you have an infinite number of each kind of coin.

  典型的动态规划问题,就是背包问题的改版,利用二维数组存储,到当前的硬币为止到达一个数值所用的硬币数,遍历两个维度,寻找到每个硬币为止,能组成一个和值的最小的组成数,利用两个变量存储能达到当前的两种可能,一是不需要当前的硬币就能达到,那么值与之前的值一样,二是加上当前硬币能够达到,那么就是到当前硬币为止的,到达总值剪去当前硬币值的值的数目加上1(当前硬币),然后比较两个值中取小的值,就能够获取较小的值。最后所有硬币达到所求值的结果就被求了出来。

实现代码如下:

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> temp(amount+1,-1);
        vector<vector<int> > f(coins.size(),temp );       
        for(int i=0;i<coins.size();i++)
        {
            f[i][0]=0;
            for(int j=1;j<=amount;j++)
            {
                int x,y;
                if(i>0)
                x = f[i-1][j];
                else
                x=-1;
                if(j>=coins[i])
                {
                    y = f[i][j-coins[i]]==-1? -1:f[i][j-coins[i]]+1;
                }              
                else
                y=-1;
                if(x!=-1&&y!=-1)
                f[i][j] = x>y? y:x;
                else
                if(x==-1&&y==-1)
                f[i][j] = -1;
                else
                f[i][j]=x+y+1;
            }
        }
        return f[coins.size()-1][amount];
    }
};



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值