树+ 动态规划

树+ 动态规划

这种结局思路主要是 利用一个全局变量,然后加一个递归方法,递归方法求解初当前节点处满足题意的最大值情况,然后当前节点能够满足的最大值与目前得到的最大值做一个比较

  • 全局变量 Max
  • 调用递归方法
  • 调用递归左右节点的情况
  • 更新最大值的情况
  • return 返回当前节点满足的情况

路径最大和 124. Binary Tree Maximum Path Sum

class Solution {
    int max=0;
    public int diameterOfBinaryTree(TreeNode root) {
        if(root==null)
            return 0;
        maxdepth(root);
        return max;
    }
    //通过树的高度来解决该种问题
  
  private int maxdepth(TreeNode root){
        if(root==null)
            return 0;
        int left = maxdepth(root.left);
        int right = maxdepth(root.right);
        // 动态规划问题,更新权重情况
        max= Math.max(left+right,max);
        //1 代表当前根节点的情况  + 1操作
        return Math.max(left,right)+1;
    }
}

树中路径最长 543. Diameter of Binary Tree

public class Solution {
    int maxValue;
    
    public int maxPathSum(TreeNode root) {
        maxValue = Integer.MIN_VALUE;
        maxPathDown(root);
        return maxValue;
    }
    private int maxPathDown(TreeNode node) {
        if (node == null) return 0;
        // 左边如何小于0一定添加,等于0相等于不添加
        int left = Math.max(0, maxPathDown(node.left));
        // 右边如何小于0,等于0相当于不添加的情况
        int right = Math.max(0, maxPathDown(node.right));
        maxValue = Math.max(maxValue, left + right + node.val);
      //也就是当前节点的值不知道而已 ,
w为何
        return Math.max(left, right) + node.val;  // 
    }
}

关于为何要返回return Math.max(left,right) + node.val

下面图片的演示结果情况
| 在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值