方法一:在conda中安装方法
conda install -c conda-forge pytorch_geometric
方法二:通过二进制安装
我们为所有主要的OS / PyTorch / CUDA组合提供压轮:
-
确保至少安装了PyTorch 1.4.0:
$ python -c "import torch; print(torch.__version__)" >>> 1.7.0
-
查找PyTorch安装的CUDA版本:
$ python -c "import torch; print(torch.version.cuda)" >>> 10.2
-
安装相关的软件包:
pip install torch-scatter==latest+${CUDA} -f https://pytorch-geometric.com/whl/torch-${TORCH}.html pip install torch-sparse==latest+${CUDA} -f https://pytorch-geometric.com/whl/torch-${TORCH}.html pip install torch-cluster==latest+${CUDA} -f https://pytorch-geometric.com/whl/torch-${TORCH}.html pip install torch-spline-conv==latest+${CUDA} -f https://pytorch-geometric.com/whl/torch-${TORCH}.html pip install torch-geometric
在那里
${CUDA}
,并${TORCH}
应通过特定CUDA版本(被替换cpu
,cu92
,cu101
,cu102
,cu110
)和PyTorch版本(1.4.0
,1.5.0
,1.6.0
,1.7.0
)分别。例如,对于PyTorch 1.7.0和CUDA 11.0,键入:pip install torch-scatter==latest+cu110 -f https://pytorch-geometric.com/whl/torch-1.7.0.html pip install torch-sparse==latest+cu110 -f https://pytorch-geometric.com/whl/torch-1.7.0.html pip install torch-cluster==latest+cu110 -f https://pytorch-geometric.com/whl/torch-1.7.0.html pip install torch-spline-conv==latest+cu110 -f https://pytorch-geometric.com/whl/torch-1.7.0.html pip install torch-geometric
对于PyTorch 1.6.0和CUDA 10.2,输入:
pip install torch-scatter==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html pip install torch-sparse==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html pip install torch-cluster==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html pip install torch-spline-conv==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html pip install torch-geometric
方法三:通过二进制离线安装方法
解决了在线下载过慢的问题
先安装指定版本的pytorch
1.离线安装包下载:
https://pytorch-geometric.com/whl/
2.离线安装:
最好在从conda虚拟环境下安装。
按照在线安装的顺序,安装4个库:
pip install torch_scatter-2.0.6-cp38-cp38-linux_x86_64.whl
pip install torch_sparse-0.6.9-cp38-cp38-linux_x86_64.whl
pip install torch_cluster-1.5.9-cp38-cp38-linux_x86_64.whl
pip install torch_spline_conv-1.2.1-cp38-cp38-linux_x86_64.whl
pip install torch-geometric
方法四:从源安装
如果whl不支持特定版本,则可以从源代码安装PyTorch Geometric:
-
确保正确设置了CUDA(可选):
-
检查PyTorch是否安装了CUDA支持:
$ python -c "import torch; print(torch.cuda.is_available())" >>> True
-
将CUDA添加到
$PATH
和$CPATH
(请注意,您实际的CUDA路径可能与有所不同/usr/local/cuda
):$ export PATH=/usr/local/cuda/bin:$PATH $ echo $PATH >>> /usr/local/cuda/bin:... $ export CPATH=/usr/local/cuda/include:$CPATH $ echo $CPATH >>> /usr/local/cuda/include:...
-
$LD_LIBRARY_PATH
在Linux和$DYLD_LIBRARY_PATH
macOS上添加CUDA (请注意,实际CUDA路径可能与有所不同/usr/local/cuda
):$ export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH $ echo $LD_LIBRARY_PATH >>> /usr/local/cuda/lib64:... $ export DYLD_LIBRARY_PATH=/usr/local/cuda/lib:$DYLD_LIBRARY_PATH $ echo $DYLD_LIBRARY_PATH >>> /usr/local/cuda/lib:...
-
验证
nvcc
可从终端访问:$ nvcc --version >>> 10.2
-
确保PyTorch和系统CUDA版本匹配:
$ python -c "import torch; print(torch.version.cuda)" >>> 10.2 $ nvcc --version >>> 10.2
-
-
安装所有需要的软件包:
pip install torch-scatter
pip install torch-sparse
pip install torch-cluster
pip install torch-spline-conv
pip install torch-geometric
在极少数情况下,CUDA或Python路径问题会阻止成功安装。 pip
甚至可能预示安装成功,但运行时报缺少模块错误或执行简单地崩溃。在“常见问题”小节中,我们收集了许多常见的安装错误。如果FAQ不能帮助您解决问题,请创建问题。您还应该按照官方安装指南来验证CUDA的设置正确,并且官方扩展示例在您的计算机上运行。