如何安装pytorch_geometric库

方法一:在conda中安装方法

conda install -c conda-forge pytorch_geometric

方法二:通过二进制安装

我们为所有主要的OS / PyTorch / CUDA组合提供压轮:

  1. 确保至少安装了PyTorch 1.4.0:

    $ python -c "import torch; print(torch.__version__)"
    >>> 1.7.0
    
  2. 查找PyTorch安装的CUDA版本:

    $ python -c "import torch; print(torch.version.cuda)"
    >>> 10.2
    
  3. 安装相关的软件包:

    pip install torch-scatter==latest+${CUDA} -f https://pytorch-geometric.com/whl/torch-${TORCH}.html
    pip install torch-sparse==latest+${CUDA} -f https://pytorch-geometric.com/whl/torch-${TORCH}.html
    pip install torch-cluster==latest+${CUDA} -f https://pytorch-geometric.com/whl/torch-${TORCH}.html
    pip install torch-spline-conv==latest+${CUDA} -f https://pytorch-geometric.com/whl/torch-${TORCH}.html
    pip install torch-geometric
    

    在那里${CUDA},并${TORCH}应通过特定CUDA版本(被替换cpucu92cu101cu102cu110)和PyTorch版本(1.4.01.5.01.6.01.7.0)分别。例如,对于PyTorch 1.7.0和CUDA 11.0,键入:

    pip install torch-scatter==latest+cu110 -f https://pytorch-geometric.com/whl/torch-1.7.0.html
    pip install torch-sparse==latest+cu110 -f https://pytorch-geometric.com/whl/torch-1.7.0.html
    pip install torch-cluster==latest+cu110 -f https://pytorch-geometric.com/whl/torch-1.7.0.html
    pip install torch-spline-conv==latest+cu110 -f https://pytorch-geometric.com/whl/torch-1.7.0.html
    pip install torch-geometric
    

    对于PyTorch 1.6.0和CUDA 10.2,输入:

    pip install torch-scatter==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html
    pip install torch-sparse==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html
    pip install torch-cluster==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html
    pip install torch-spline-conv==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html
    pip install torch-geometric
    

方法三:通过二进制离线安装方法

解决了在线下载过慢的问题
先安装指定版本的pytorch
1.离线安装包下载:
https://pytorch-geometric.com/whl/
2.离线安装:
最好在从conda虚拟环境下安装。
按照在线安装的顺序,安装4个库:

pip install torch_scatter-2.0.6-cp38-cp38-linux_x86_64.whl
pip install torch_sparse-0.6.9-cp38-cp38-linux_x86_64.whl
pip install torch_cluster-1.5.9-cp38-cp38-linux_x86_64.whl
pip install torch_spline_conv-1.2.1-cp38-cp38-linux_x86_64.whl
pip install torch-geometric

遇到的报错问题

方法四:从源安装

如果whl不支持特定版本,则可以从源代码安装PyTorch Geometric:

  1. 确保正确设置了CUDA(可选):

    1. 检查PyTorch是否安装了CUDA支持:

      $ python -c "import torch; print(torch.cuda.is_available())"
      >>> True
      
    2. 将CUDA添加到$PATH$CPATH(请注意,您实际的CUDA路径可能与有所不同/usr/local/cuda):

      $ export PATH=/usr/local/cuda/bin:$PATH
      $ echo $PATH
      >>> /usr/local/cuda/bin:...
      
      $ export CPATH=/usr/local/cuda/include:$CPATH
      $ echo $CPATH
      >>> /usr/local/cuda/include:...
      
    3. $LD_LIBRARY_PATH在Linux和$DYLD_LIBRARY_PATHmacOS上添加CUDA (请注意,实际CUDA路径可能与有所不同/usr/local/cuda):

      $ export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
      $ echo $LD_LIBRARY_PATH
      >>> /usr/local/cuda/lib64:...
      
      $ export DYLD_LIBRARY_PATH=/usr/local/cuda/lib:$DYLD_LIBRARY_PATH
      $ echo $DYLD_LIBRARY_PATH
      >>> /usr/local/cuda/lib:...
      
    4. 验证nvcc可从终端访问:

      $ nvcc --version
      >>> 10.2
      
    5. 确保PyTorch和系统CUDA版本匹配:

      $ python -c "import torch; print(torch.version.cuda)"
      >>> 10.2
      
      $ nvcc --version
      >>> 10.2
      
  2. 安装所有需要的软件包:

	pip install torch-scatter
	pip install torch-sparse
	pip install torch-cluster
	pip install torch-spline-conv
	pip install torch-geometric

在极少数情况下,CUDA或Python路径问题会阻止成功安装。 pip甚至可能预示安装成功,但运行时报缺少模块错误或执行简单地崩溃。在“常见问题”小节中,我们收集了许多常见的安装错误。如果FAQ不能帮助您解决问题,请创建问题。您还应该按照官方安装指南来验证CUDA的设置正确,并且官方扩展示例在您的计算机上运行。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陨星落云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值