<div id="content_views" class="markdown_views prism-atom-one-dark">
<!-- flowchart 箭头图标 勿删 -->
<svg xmlns="http://www.w3.org/2000/svg" style="display: none;">
<path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path>
</svg>
<p>计算机视觉旨在从图像中提取有用的信息,这已经被证实是一个极具挑战性的任务。那么图像是什么?或者说我们把图像看作什么?</p>
<p>有人说图像就是一张图片,一个场景,一个矩形(rectangle),一个矩阵(matrix)。我们先看一个图像实例: <br>
<img src="https://img-blog.csdn.net/20171219220337544?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvc2FsdHJpdmVy/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="这里写图片描述" title=""></p>
<p>这是一张黑白图像,也就是常说的灰度图。更多的图像是彩色的RGB图像。灰度图处理起来更加简单方便,因此这里使用灰度图像,重在理解。</p>
<p>我们把这幅图像加上坐标刻度,如下图所示:</p>
<p><img src="https://img-blog.csdn.net/20171219220415829?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvc2FsdHJpdmVy/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="这里写图片描述" title=""></p>
<p>放到坐标系中后,我们能把一副图像看作是一个二维函数,定义成f(x, y)或者I(x, y)。任何一对空间坐标(x, y)处f的值看作该坐标点处的强度(intensity)或灰度。我们把每一坐标点处的强度在三维空间中看看。</p>
<p><img src="https://img-blog.csdn.net/20171219220506154?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvc2FsdHJpdmVy/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="这里写图片描述" title=""></p>
<p>下面是二维函数f(x, y)=x**2+y**2的可视化,与上述图像的二维函数相比,无非是坐标的取值范围不同,函数的表达式不一样。</p>
<p><img src="https://img-blog.csdn.net/20171219220547439?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvc2FsdHJpdmVy/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="这里写图片描述" title=""></p>
<p>把图像看作是一个二维函数,将对后续的图像处理理解和计算带来极大的便利,对图像的处理就是对函数的处理。需要强调的是把图像作为二维函数时,它是一个离散函数,且取值范围有所限定,比如x, y轴的坐标值,函数取值也限定在某个区间之内(不一定是[0-225])。另外,图像作为函数,不可能得到上面类似f(x, y)=x**2+y**2这样的表达式。</p>
<p>对于彩色图像,同样可以看作是一个向量函数。f(x, y) = [r(x, y), g(x, y), b(x, y)]</p> </div>