复变:认识复数

本文介绍了复数的基本概念,包括表示方法(向量、三角和指数),运算规则,以及复变函数中的解析函数、欧拉公式、柯西-黎曼方程等内容,重点讲解了复数运算的几何意义和解析函数的性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要参考视频:

2.4.解析函数:解析函数与调和函数_哔哩哔哩_bilibili

仅复习一些基础内容,供本人学习之用。

另外有一篇文章说的挺有意思,可以看看:

数字——虚数概述 - 知乎 (zhihu.com)

虚数单位和复数

复数的表示方法

复数有三种表示方法

向量表示式

向量表示中,有一些概念需要搞清楚

Arg,argument,辐角

如果只看辐角,那么范围是无限的,因为转一圈2π,转k圈就是2kπ……

所以,我们一般都是看主值,范围在-π到π之间

三角表示式

 

这个公式很好理解,对于z=x+iy来说,x就是复数构成的三角形的θ角的邻边,y就是对边,又有复数的模r是斜边的长度,根据三角函数的定义,有x=rcosθ,y=rsinθ,带入得z=r*cosθ+r*isinθ,把r提出来,就是z=r(cosθ+isinθ)

指数表示式

学习指数表示式之前,得熟悉下“欧拉公式”

总结如下:

上小节我们知道了复数的三角表示式z=r(cosθ+isinθ)

显然,括号里可以使用欧拉公式变成e^iθ

因此,复数可以使用指数来表示为

z=re^iθ

更加简洁。

复数的运算

交换律、结合律和分配率

复数的共轭和四则运算

注意,相除时分母上的虚数部分通过同时乘以分母的共轭,来将虚数单位给化掉了。

复数的乘幂和方根

复数运算的几何意义

加减的几何意义

乘积和商的几何意义

注意,这里是模相乘,不是什么系数相乘。

比如i*i,模相乘得1,角度相加得π,最后结果是-1

下面的内容暂时做个简单了解即可。 


复变函数

注意,这里是写成了实部和虚部的标准形式。

复变函数的极限

复变函数的连续性

解析函数

柯西-黎曼方程

函数在某点可导的充要条件

求导公式

解析

初等函数

这里的初等函数指的是复数的初等函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值