参考课程:【建议收藏】同济七版《高等数学》精讲视频 | 期末考试 | 考研零基础 | 高数小白_哔哩哔哩_bilibili
仅供本人学习之用
无穷小
无穷小不是指趋近于负无穷,而是趋近于0
比如
这里x-2就叫做x趋近于2时的无穷小;1/x就叫做x趋近于无穷时的无穷小;
有个误解需要纠正:
0不是无穷小,0是一个实常数,而无穷小是指无限趋近于0的一个变量,两者的概念完全不同。无穷小是一个永远都在变的概念,永远停不下来,永远在向0更进一步,但永远也接触不到,就像一个超级大舔狗。
无穷小是极限为0的变量而不是数量0,是指自变量在一定变动方式下其极限为数量0,称一个函数是无穷小,一定要说明自变量的变化趋势。
无穷大
说的这么绕,其实意思就是当x趋近于x0或者x趋近于无穷时,极限值趋近于无穷,那么称函数f(x)为对应时候的无穷大,函数值正无穷和负无穷都属于无穷大;
这里我一开始有个误解,以为无穷大是函数值的极限为无穷大;
其实,不能这么说,为什么呢?
函数值大于一个很大的数,也就是说函数值趋近于无穷,我们不能说该函数的极限是无穷大,因为当函数值趋近于无穷时,说明极限是不存在的,极限的定义中是函数值趋近于某个常数A。
而无穷小时,就是函数的极限为0,是存在极限的,所以我们关注无穷小比关注无穷大要更多。
注意,定义里只是说函数值的绝对值大于一个很大的数,并没有说它的极限是无穷大,还是很严谨的。
几何意义