waterdrop导出hdfs数据到clickhouse(text,csv,json)

首先用hive创建表(这里是为了生成hdfs文件方便,实际hive表导出应该是整合spark直接写sql导出):

 CREATE TABLE test.hdfs2ch2(
           id int, 
           name string, 
           create_time timestamp);
 insert into hdfs2ch2 values(1,'zhangsan',' 2020-01-01 01:01:01.000001');
 insert into hdfs2ch2 values(2,'lisi','2020-01-01 01:01:01.000002');

至于为什么要用’2020-01-01 01:01:01.000002’这种格式的数据,是为了多演示这种比较偏的类型.
clickhosue创建表语句:

CREATE TABLE mydatabase.hdfs2ch2
(
    `id` Int64,
    `name` String,
    `create_time` DateTime
)
ENGINE = MergeTree()
ORDER BY id
SETTINGS index_granularity = 8192

下面上waterdrop脚本:

spark {
  #程序名称
  spark.app.name = "Waterdrop"
  #executor的数量(数据量大可以适当增大)
  spark.executor.instances = 1
  #每个excutor核数(并行度,数据量大可以适当增大到服务器核数一半以下,尽量不要影响clickhouse)
  spark.executor.cores = 1
  #每个excutor内存(不能小于512m)
  spark.executor.memory = "1g"
}

input {
 hdfs {
    result_table_name = "test_source"
    #hive创建表的hdfs路径
    path = "hdfs://node01:8020/user/hive/warehouse/test.db/hdfs2ch2"
    format="text"
 }
}

filter {
  split {
    #根据分隔符切割后给每个列的名字
    fields = ["id", "name","create_time"]
    #这里指的是hive的字段分隔符,不然无法切割
    delimiter = "\\001"
  }
  convert {
    #因为刚切割后所有字段类型为string,如果不转化就会报错
    #可以转化的类型string、integer、long、float、double和boolean
    source_field = "id"
    new_type = "long"
} 
  date {
    #指定要进行转换的原字段名
    source_field = "create_time"
    #指定转化结束后的字段名(必须指定)
    target_field = "create_time"
    #大S就是毫秒的表示,如果表示错误,会转化失败,转化失败就会生成当前时间
    source_time_format = "yyyy-MM-dd HH:mm:ss.SSSSSS"
    target_time_format = "yyyy-MM-dd HH:mm:ss"
   }
}
output {
  #输出到控制台
  stdout{
    #限制数据两条
    limit=2
  }
 clickhouse {
    host = "node01:8123"
    clickhouse.socket_timeout = 50000
    database = "mydatabase"
    table = "hdfs2ch2"
    fields = ["id","name","create_time"]
    username = ""
    password = ""
    bulk_size = 20000
}
}

执行:
./bin/start-waterdrop.sh --master yarn --deploy-mode client --config ./config/hdfs-clickhouse2.conf

查看数据:

node01.hadoop.com 😃 select * from hdfs2ch2;

SELECT *
FROM hdfs2ch2

┌─id─┬─name─────┬─────────create_time─┐
│ 1 │ zhangsan │ 2020-01-01 01:01:01 │
└────┴──────────┴─────────────────────┘
┌─id─┬─name─┬─────────create_time─┐
│ 2 │ lisi │ 2020-01-01 01:01:01 │
└────┴──────┴─────────────────────┘

2 rows in set. Elapsed: 0.009 sec.

CSV
如果是csv格式,表头不是字段名的话,就使用上面方式导入,只是input里面 delimiter = ","其他的一样,但是如果表头是字段名的话:

input {
 hdfs {
    result_table_name = "test_source"
    path = "hdfs://node01:8020/user/hive/warehouse/test.db/hdfs2ch3"
    format="csv"
    #此处注明表头是字段名
    options.header = "true"
 }
}

这样子的话不要filter中的split标签进行切分添加字段名字了,但是每个字段还是string类型,与clickhouse类型不一样的还是要转换.
完整的csv示例:

xxx.csv
id,name,age
1,zhangsan,18

spark {
  #程序名称
  spark.app.name = "Waterdrop"
  #executor的数量(数据量大可以适当增大)
  spark.executor.instances = 1
  #每个excutor核数(并行度,数据量大可以适当增大到服务器核数一半以下,尽量不要影响clickhouse)
  spark.executor.cores = 1
  #每个excutor内存(不能小于512m)
  spark.executor.memory = "1g"
}
input {
 hdfs {
    result_table_name = "test_source"
    path = "hdfs://node01:8020/user/hive/warehouse/test.db/hdfs2ch3"
    format="csv"
    options.header = "true"
 }
}

filter {
  convert {
    source_field = "id"
    new_type = "integer"
   }
  convert {
    source_field = "age"
    new_type = "integer"
  }
#date {
#    source_field = "create_time"
#    target_field = "create_time"
#    source_time_format = "yyyy-MM-dd HH:mm:ss.SSSSSS"
#    target_time_format = "yyyy-MM-dd HH:mm:ss"
#}
}

output {
    stdout{
     limit=2
    }
 clickhouse {
    host = "node01:8123"
    clickhouse.socket_timeout = 50000
    database = "mydatabase"
    table = "hdfs2ch3"
    fields = ["id","name","age"]
    username = ""
    password = ""
    bulk_size = 20000
}
}

JSON
如果是json格式数据,跟csv一样,只是json带有一定格式,数字格式为long类型.

{"id":1,"name":"zhangsan","age":18}
spark {
  #程序名称
  spark.app.name = "Waterdrop"
  #executor的数量(数据量大可以适当增大)
  spark.executor.instances = 1
  #每个excutor核数(并行度,数据量大可以适当增大到服务器核数一半以下,尽量不要影响clickhouse)
  spark.executor.cores = 1
  #每个excutor内存(不能小于512m)
  spark.executor.memory = "1g"
}

input {
 hdfs {
    result_table_name = "test_source"
    path = "hdfs://node01:8020/user/hive/warehouse/test.db/hdfs2ch4"
    format="json"
 }
}

filter {
  convert {
    source_field = "id"
    new_type = "integer"
}
  convert {
    source_field = "age"
    new_type = "integer"
}
#date {
#    source_field = "create_time"
#    target_field = "create_time"
#    source_time_format = "yyyy-MM-dd HH:mm:ss.SSSSSS"
#    target_time_format = "yyyy-MM-dd HH:mm:ss"
#}
}
output {
  stdout{
  limit=2
 }
 clickhouse {
    host = "node01:8123"
    clickhouse.socket_timeout = 50000
    database = "mydatabase"
    table = "hdfs2ch3"
    fields = ["id","name","age"]
    username = ""
    password = ""
    bulk_size = 20000
}
}
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页