数据仓库
文章平均质量分 64
天秤焕妍
这个作者很懒,什么都没留下…
展开
-
数据仓库(一)之需求篇
概述  业务需求定义了企业的业务人员为了完成其工作,进而实现企业目标,一定要具备的东西。包括功能性需求和提供的服务。它是数据仓库的核心,从广度和深度上做好需求调研为数据仓库建设建立良好的开端。      &转载 2018-12-13 15:41:24 · 378 阅读 · 0 评论 -
数据仓库(二)之维度建模篇
概述 维度建模是一种将数据结构化的逻辑设计方法,它将客观世界划分为度量和上下文。度量是常常是以数值形式出现,事实周围有上下文包围着,这种上下文被直观地分成独立的逻辑块,称之为维度。它与实体-关系建模有很大的区别,实体-关系建模是面向应用,遵循第三范式,以消除数据冗余为目标的设计技术。维度建模是面向分析...转载 2018-12-13 15:43:11 · 507 阅读 · 0 评论 -
数据仓库(三)之架构篇
概述 架构是数据仓库建设的总体规划,从整体视角描述了解决方案的高层模型,描述了各个子系统的功能以及关系,描述了数据从源系统到决策系统的数据流程。业务需求回答了要做什么,架构就是回答怎么做的问题。 架构的价值 &...转载 2018-12-13 15:44:17 · 229 阅读 · 0 评论 -
数据仓库(四)之ETL开发
概述 ETL是数据仓库的后台,主要包含抽取、清洗、规范化、提交四个步骤,传统数据仓库一般分为四层模型。                  转载 2018-12-13 15:45:48 · 330 阅读 · 0 评论 -
数据仓库(五)元数据管理
概述 元数据通常定义为”关于数据的数据”,在数据仓库中是定义和描述DW/BI系统的结构,操作和内容的所有信息。元数据贯穿了数据仓库的整个生命周期,使用元数据驱动数据仓库的开发,使数据仓库自动化,可视化。 元数据类型  ...转载 2018-12-13 15:47:05 · 326 阅读 · 0 评论 -
数据仓库(六)之数据质量篇
概述 数据质量的高低代表了该数据满足数据消费者期望的程度,这种程度基于他们对数据的使用预期。数据质量必须是可测量的,把测量的结果转化为可以理解的和可重复的数字,使我们能够在不同对象之间和跨越不同时间进行比较。 数据质量管理是通过计划、实施和控制活动,运用质量管理技术度量、评估、改进和保证数据...转载 2018-12-13 15:48:31 · 390 阅读 · 0 评论