生成器,只有在调用的时候,才会生成相应的数据,只记录当前位置,只有一个next()方法
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的 []
改成()
,就创建了一个generator
#列表生成式
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
# 生成器
# 生成器,节省内存空间,调用的时候才会生成相应的数据
# 生成器, 只记录当前位置
# 列表,占用内存
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>
创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值
>>> g.__next__()
0
>>> g.__next__()
1
>>> g.__next__()
4
在生成器中,python2 与 python3 的区别
python2 是 next()
python3 是__next__()
我们讲过,generator保存的是算法,每次调用g.__next__()
,就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。
当然,上面这种不断调用g.__next__()
实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象
code -> for 循环
>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
81
code 生成器练习
#列表生成式
print([i * 2 for i in range(10)])
##[ function(i) for i in range(10)]
a = []
for i in range(10):
a.append(i * 2)
print(a)
# 生成器,节省内存空间,调用的时候才会生成
b = (i * 2 for i in range(10))
for i in b:
print(i)
#生成器,只有在调用时,才会生成相应的数据
#只记录当前位置
#列表,占用内存
c = [i * 2 for i in range(1000)]
#列表生成器,不占内存,调用的时候才会生成
d = (i * 2 for i in range(1000))
#d.__next__()
print("----------")
print(len(c))
print(c[4])
print(d.__next__())
print(d.__next__())
print(d.__next__())
print(d)
# for i in d:
# print(i)
#生成器,只有在调用的时候,才会生成相应的数据
只记录当前位置,只有一个__next__()方法