1. 基于摄像头的物体移动侦测系统
开题报告
课题名称: 基于Android摄像头的实时物体移动检测系统设计与实现
研究背景:
- 传统监控系统依赖固定算法,误报率高;
- 移动端计算能力提升,支持实时图像处理。
研究意义:
- 实现低功耗实时监控;
- 应用于家庭安防、智能仓储等场景。
系统功能模块
模块 | 功能描述 |
---|---|
移动检测 | 基于背景差分法识别物体运动 |
实时告警 | 触发声音/推送通知 |
视频存储 | 本地加密保存异常片段 |
ER图与数据库设计
ER图:
mermaid
erDiagram
USER ||--o{ DEVICE : "1:n"
USER {
string UserID PK
string Phone
string Password
}
DEVICE ||--o{ ALERT : "1:n"
DEVICE {
string DeviceID PK
string UserID FK
string Location
}
ALERT {
int AlertID PK
string DeviceID FK
datetime Time
string VideoPath
}
数据库表结构:
sql
-- 用户表
CREATE TABLE User (
UserID VARCHAR(20) PRIMARY KEY,
Phone VARCHAR(15) UNIQUE,
Password VARCHAR(100)
);
-- 设备表
CREATE TABLE Device (
DeviceID VARCHAR(20) PRIMARY KEY,
UserID VARCHAR(20),
Location VARCHAR(50),
FOREIGN KEY (UserID) REFERENCES User(UserID)
);
-- 告警记录表
CREATE TABLE Alert (
AlertID INT AUTO_INCREMENT PRIMARY KEY,
DeviceID VARCHAR(20),
Time DATETIME,
VideoPath VARCHAR(200),
FOREIGN KEY (DeviceID) REFERENCES Device(DeviceID)
);
技术实现与源码
移动检测核心代码(OpenCV):
java
public class MotionDetector {
private Mat prevFrame;
public Rect detect(Mat currentFrame) {
if (prevFrame == null) {
prevFrame = currentFrame.clone();
return null;
}
// 1. 灰度化与高斯模糊
Mat grayPrev = new Mat();
Mat grayCurrent = new Mat();
Imgproc.cvtColor(prevFrame, grayPrev, Imgproc.COLOR_BGR2GRAY);
Imgproc.cvtColor(currentFrame, grayCurrent, Imgproc.COLOR_BGR2GRAY);
Imgproc.GaussianBlur(grayPrev, grayPrev, new Size(21, 21), 0);
Imgproc.GaussianBlur(grayCurrent, grayCurrent, new Size(21, 21), 0);
// 2. 计算帧间差异
Mat diff = new Mat();
Core.absdiff(grayPrev, grayCurrent, diff);
Imgproc.threshold(diff, diff, 25, 255, Imgproc.THRESH_BINARY);
// 3. 寻找轮廓
List<MatOfPoint> contours = new ArrayList<>();
Mat hierarchy = new Mat();
Imgproc.findContours(diff, contours, hierarchy,
Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
// 4. 返回最大轮廓区域
Rect maxRect = null;
double maxArea = 0;
for (MatOfPoint contour : contours) {
Rect rect = Imgproc.boundingRect(contour);
double area = rect.area();
if (area > maxArea && area > 500) {
maxArea = area;
maxRect = rect;
}
}
prevFrame = currentFrame.clone();
return maxRect;
}
}
项目简介
技术栈:
- 前端: Android (Java) + OpenCV + MediaRecorder
- 后端: Firebase (存储告警视频)
- 算法: 背景差分法 + 轮廓检测
创新点:
- 自适应阈值调整: 根据环境光线动态调整检测灵敏度;
- 低功耗优化: 仅在检测到移动时启动录像;
- 端到端加密: AES-256加密本地存储视频。
应用场景:
- 家庭智能安防监控;
- 仓库物资移动监测。
2. Android报修系统
开题报告
课题名称: 基于Android的智能设备报修管理系统设计与实现
研究背景:
- 传统报修流程效率低下,信息不透明;
- 急需移动端解决方案提升响应速度。
研究意义:
- 实现工单实时跟踪;
- 优化维修资源分配。
ER图与数据库设计
ER图:
mermaid
erDiagram
USER ||--o{ REPAIR_ORDER : "1:n"
USER {
string UserID PK
string Role
string Contact
}
REPAIR_ORDER ||--o{ COMMENT : "1:n"
REPAIR_ORDER {
int OrderID PK
string UserID FK
string DeviceInfo
string Status
}
COMMENT {
int CommentID PK
int OrderID FK
string Content
datetime Time
}
数据库表结构:
sql
-- 工单表
CREATE TABLE RepairOrder (
OrderID INT AUTO_INCREMENT PRIMARY KEY,
UserID VARCHAR(20),
DeviceInfo VARCHAR(200),
Status ENUM('Pending', 'Processing', 'Completed'),
FOREIGN KEY (UserID) REFERENCES User(UserID)
);
-- 评论表
CREATE TABLE Comment (
CommentID INT AUTO_INCREMENT PRIMARY KEY,
OrderID INT,
Content TEXT,
Time DATETIME,
FOREIGN KEY (OrderID) REFERENCES RepairOrder(OrderID)
);
技术实现与源码
实时工单推送(Firebase Cloud Messaging):
java
public class NotificationService extends FirebaseMessagingService {
@Override
public void onMessageReceived(RemoteMessage message) {
if (message.getData().containsKey("orderId")) {
Intent intent = new Intent(this, OrderDetailActivity.class);
intent.putExtra("orderId", message.getData().get("orderId"));
PendingIntent pendingIntent = PendingIntent.getActivity(
this, 0, intent, PendingIntent.FLAG_UPDATE_CURRENT);
NotificationCompat.Builder builder = new NotificationCompat.Builder(this, "repair_channel")
.setContentTitle("工单状态更新")
.setContentText(message.getData().get("msg"))
.setContentIntent(pendingIntent);
NotificationManagerCompat.from(this).notify(1, builder.build());
}
}
}
项目简介
技术栈:
- 前端: Android (Kotlin) + Material Design
- 后端: Spring Boot + MySQL
- 实时通信: WebSocket + FCM
创新点:
- OCR识别设备编码: 自动填充设备信息;
- 工单优先级算法: 根据设备类型、报修紧急度分配维修人员;
- 评价系统: 维修完成后用户评分。
应用场景:
- 企业IT设备运维;
- 物业设施报修管理。
3. Android旅游APP
开题报告
课题名称: 基于位置服务的智能旅游导航系统设计与实现
研究背景:
- 旅游信息碎片化,缺乏个性化推荐;
- 传统导航工具无法满足景点深度游需求。
研究意义:
- 整合POI数据与用户偏好;
- 提供AR实景导航功能。
ER图与数据库设计
ER图:
mermaid
erDiagram
USER ||--o{ TRAVEL_PLAN : "1:n"
USER {
string UserID PK
string Preferences
}
TRAVEL_PLAN ||--o{ POI : "n:m"
TRAVEL_PLAN {
int PlanID PK
string UserID FK
string City
}
POI {
int PoiID PK
string Name
string Type
float Rating
}
数据库表结构:
sql
-- 旅游计划表
CREATE TABLE TravelPlan (
PlanID INT AUTO_INCREMENT PRIMARY KEY,
UserID VARCHAR(20),
City VARCHAR(50),
FOREIGN KEY (UserID) REFERENCES User(UserID)
);
-- 兴趣点表
CREATE TABLE POI (
PoiID INT AUTO_INCREMENT PRIMARY KEY,
Name VARCHAR(100),
Type ENUM('景点', '餐饮', '住宿'),
Rating FLOAT
);
-- 计划-POI关联表
CREATE TABLE Plan_POI (
PlanID INT,
PoiID INT,
PRIMARY KEY (PlanID, PoiID),
FOREIGN KEY (PlanID) REFERENCES TravelPlan(PlanID),
FOREIGN KEY (PoiID) REFERENCES POI(PoiID)
);
技术实现与源码
AR导航(ARCore):
java
public class ARNavigationActivity extends AppCompatActivity {
private ArSceneView arSceneView;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_ar_nav);
arSceneView = findViewById(R.id.arSceneView);
// 设置AR场景
arSceneView.getScene().addOnUpdateListener(frameTime -> {
Frame frame = arSceneView.getArFrame();
if (frame != null) {
// 获取目标POI坐标并渲染箭头
renderNavigationArrow(targetLatLng);
}
});
}
private void renderNavigationArrow(LatLng target) {
// 计算设备与目标的相对位置
Location current = getCurrentLocation();
float bearing = current.bearingTo(target);
// 创建指向箭头的AnchorNode
AnchorNode arrowNode = new AnchorNode();
arrowNode.setRenderable(loadArrowModel());
arrowNode.setLocalRotation(Quaternion.axisAngle(
new Vector3(0f, 1f, 0f), bearing));
arSceneView.getScene().addChild(arrowNode);
}
}
项目简介
技术栈:
- 前端: ARCore + 高德地图SDK
- 后端: Node.js + MongoDB
- 推荐算法: 协同过滤 + 地理围栏
创新点:
- 动态路线规划: 根据实时交通数据调整导航路径;
- 语音导览: TTS播报景点历史文化信息;
- 离线地图: 预下载城市地图节省流量。
应用场景:
- 自由行游客个性化导航;
- 旅行社行程规划工具。
4. 易心旅游志愿者系统
开题报告
课题名称: 基于Android的旅游志愿者管理与服务调度系统
研究背景:
- 大型活动志愿者调度效率低;
- 缺乏实时沟通与任务追踪工具。
研究意义:
- 提升志愿者任务匹配精度;
- 实现服务过程可视化监管。
ER图与数据库设计
ER图:
mermaid
erDiagram
VOLUNTEER ||--o{ TASK : "n:m"
VOLUNTEER {
string VolunteerID PK
string Skills
string Availability
}
TASK ||--o{ LOCATION : "1:1"
TASK {
int TaskID PK
string Type
string Status
}
LOCATION {
int LocID PK
string Name
float Lat
float Lng
}
数据库表结构:
sql
-- 志愿者表
CREATE TABLE Volunteer (
VolunteerID VARCHAR(20) PRIMARY KEY,
Skills JSON, -- 存储技能标签数组
Availability ENUM('空闲', '忙碌')
);
-- 任务表
CREATE TABLE Task (
TaskID INT AUTO_INCREMENT PRIMARY KEY,
Type ENUM('引导', '翻译', '急救'),
Status ENUM('未分配', '进行中', '已完成'),
LocID INT,
FOREIGN KEY (LocID) REFERENCES Location(LocID)
);
-- 任务分配表
CREATE TABLE Assignment (
TaskID INT,
VolunteerID VARCHAR(20),
PRIMARY KEY (TaskID, VolunteerID),
FOREIGN KEY (TaskID) REFERENCES Task(TaskID),
FOREIGN KEY (VolunteerID) REFERENCES Volunteer(VolunteerID)
);
技术实现与源码
任务分配算法:
java
public class TaskScheduler {
public void assignTasks(List<Volunteer> volunteers, List<Task> tasks) {
// 基于技能匹配与位置优先级的贪心算法
for (Task task : tasks) {
Volunteer bestFit = null;
double maxScore = 0;
for (Volunteer volunteer : volunteers) {
if (volunteer.getAvailability().equals("空闲")) {
double skillScore = calculateSkillMatch(task.getType(), volunteer.getSkills());
double distance = getDistance(volunteer.getLocation(), task.getLocation());
double totalScore = skillScore * 0.7 + (1 - distance/1000) * 0.3;
if (totalScore > maxScore) {
maxScore = totalScore;
bestFit = volunteer;
}
}
}
if (bestFit != null) {
assignTaskToVolunteer(task, bestFit);
}
}
}
}
项目简介
技术栈:
- 前端: Android (Java) + 高德地图SDK
- 后端: Spring Cloud + Redis
- 调度算法: 贪心算法 + 实时位置追踪
创新点:
- 技能画像匹配: 根据志愿者技能标签自动分配任务;
- 实时位置追踪: 监控志愿者移动轨迹确保任务执行;
- 紧急任务熔断: 高优先级任务自动抢占资源。
应用场景:
- 大型赛事志愿者调度;
- 景区节假日人流疏导。
5. Android环卫APP
开题报告
课题名称: 基于GIS的智慧环卫作业监管系统设计与实现
研究背景:
- 传统环卫管理依赖人工巡查,效率低下;
- 急需数字化手段优化资源调配。
研究意义:
- 实现环卫车辆/人员实时监控;
- 通过数据分析优化清洁路线。
ER图与数据库设计
ER图:
mermaid
erDiagram
WORKER ||--o{ TASK : "1:n"
WORKER {
string WorkerID PK
string VehicleID
string CurrentLocation
}
TASK ||--o{ AREA : "1:1"
TASK {
int TaskID PK
string Type
datetime Deadline
}
AREA {
int AreaID PK
string Boundary
int Priority
}
数据库表结构:
sql
-- 环卫工表
CREATE TABLE Worker (
WorkerID VARCHAR(20) PRIMARY KEY,
VehicleID VARCHAR(20),
CurrentLocation POINT -- MySQL空间数据类型
);
-- 任务表
CREATE TABLE Task (
TaskID INT AUTO_INCREMENT PRIMARY KEY,
Type ENUM('清扫', '运输', '消杀'),
Deadline DATETIME,
AreaID INT,
FOREIGN KEY (AreaID) REFERENCES Area(AreaID)
);
-- 区域表
CREATE TABLE Area (
AreaID INT AUTO_INCREMENT PRIMARY KEY,
Boundary POLYGON, -- 存储区域边界坐标
Priority INT
);
技术实现与源码
最优路径规划(Dijkstra算法):
java
public class RoutePlanner {
public List<Point> calculateOptimalRoute(Point start, List<Point> targets) {
Graph graph = buildGraphFromMapData();
List<Point> route = new ArrayList<>();
Point current = start;
while (!targets.isEmpty()) {
Point nearest = findNearestPoint(current, targets);
route.addAll(graph.getShortestPath(current, nearest));
targets.remove(nearest);
current = nearest;
}
return route;
}
private Point findNearestPoint(Point src, List<Point> points) {
return points.stream()
.min(Comparator.comparingDouble(p -> distance(src, p)))
.orElse(null);
}
}
项目简介
技术栈:
- 前端: Android (Kotlin) + 百度地图SDK
- 后端: Django + PostGIS
- 路径算法: Dijkstra + 遗传算法优化
创新点:
- 垃圾满载预测: 基于历史数据预判垃圾桶清理周期;
- 异常事件上报: 工人可拍照上传路面损坏等特殊情况;
- 碳排量统计: 计算车辆路线优化后的减排效果。
应用场景:
- 城市环卫局作业监管;
- 工业园区清洁管理。
文档输出说明
- 开题报告模板: 包含背景、目标、技术路线、进度计划;
- ER图与数据库设计: 使用Mermaid语法或PowerDesigner绘制;
- 核心代码片段: 突出关键技术实现(如OpenCV移动检测、任务分配算法);
- 系统演示截图: 包含UI界面、操作流程。