​1. ​基于摄像头的物体移动侦测系统​开题报告课题名称: 基于Android摄像头的实时物体移动检测系统设计与实现研究背景: 传统监控系统依赖固定算法,误报率高; 移动

1. ​基于摄像头的物体移动侦测系统

开题报告

课题名称: 基于Android摄像头的实时物体移动检测系统设计与实现
研究背景:

  • 传统监控系统依赖固定算法,误报率高;
  • 移动端计算能力提升,支持实时图像处理。

研究意义:

  • 实现低功耗实时监控;
  • 应用于家庭安防、智能仓储等场景。

系统功能模块
模块功能描述
移动检测基于背景差分法识别物体运动
实时告警触发声音/推送通知
视频存储本地加密保存异常片段

ER图与数据库设计

ER图:

 

mermaid

erDiagram
    USER ||--o{ DEVICE : "1:n"
    USER {
        string UserID PK
        string Phone
        string Password
    }
    DEVICE ||--o{ ALERT : "1:n"
    DEVICE {
        string DeviceID PK
        string UserID FK
        string Location
    }
    ALERT {
        int AlertID PK
        string DeviceID FK
        datetime Time
        string VideoPath
    }

数据库表结构:

 

sql

-- 用户表
CREATE TABLE User (
    UserID VARCHAR(20) PRIMARY KEY,
    Phone VARCHAR(15) UNIQUE,
    Password VARCHAR(100)
);

-- 设备表
CREATE TABLE Device (
    DeviceID VARCHAR(20) PRIMARY KEY,
    UserID VARCHAR(20),
    Location VARCHAR(50),
    FOREIGN KEY (UserID) REFERENCES User(UserID)
);

-- 告警记录表
CREATE TABLE Alert (
    AlertID INT AUTO_INCREMENT PRIMARY KEY,
    DeviceID VARCHAR(20),
    Time DATETIME,
    VideoPath VARCHAR(200),
    FOREIGN KEY (DeviceID) REFERENCES Device(DeviceID)
);

技术实现与源码

移动检测核心代码(OpenCV)​:

 

java

public class MotionDetector {
    private Mat prevFrame;

    public Rect detect(Mat currentFrame) {
        if (prevFrame == null) {
            prevFrame = currentFrame.clone();
            return null;
        }
        
        // 1. 灰度化与高斯模糊
        Mat grayPrev = new Mat();
        Mat grayCurrent = new Mat();
        Imgproc.cvtColor(prevFrame, grayPrev, Imgproc.COLOR_BGR2GRAY);
        Imgproc.cvtColor(currentFrame, grayCurrent, Imgproc.COLOR_BGR2GRAY);
        Imgproc.GaussianBlur(grayPrev, grayPrev, new Size(21, 21), 0);
        Imgproc.GaussianBlur(grayCurrent, grayCurrent, new Size(21, 21), 0);
        
        // 2. 计算帧间差异
        Mat diff = new Mat();
        Core.absdiff(grayPrev, grayCurrent, diff);
        Imgproc.threshold(diff, diff, 25, 255, Imgproc.THRESH_BINARY);
        
        // 3. 寻找轮廓
        List<MatOfPoint> contours = new ArrayList<>();
        Mat hierarchy = new Mat();
        Imgproc.findContours(diff, contours, hierarchy, 
            Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
        
        // 4. 返回最大轮廓区域
        Rect maxRect = null;
        double maxArea = 0;
        for (MatOfPoint contour : contours) {
            Rect rect = Imgproc.boundingRect(contour);
            double area = rect.area();
            if (area > maxArea && area > 500) {
                maxArea = area;
                maxRect = rect;
            }
        }
        prevFrame = currentFrame.clone();
        return maxRect;
    }
}

项目简介

技术栈:

  • 前端: Android (Java) + OpenCV + MediaRecorder
  • 后端: Firebase (存储告警视频)
  • 算法: 背景差分法 + 轮廓检测

创新点:

  1. 自适应阈值调整: 根据环境光线动态调整检测灵敏度;
  2. 低功耗优化: 仅在检测到移动时启动录像;
  3. 端到端加密: AES-256加密本地存储视频。

应用场景:

  • 家庭智能安防监控;
  • 仓库物资移动监测。

2. ​Android报修系统

开题报告

课题名称: 基于Android的智能设备报修管理系统设计与实现
研究背景:

  • 传统报修流程效率低下,信息不透明;
  • 急需移动端解决方案提升响应速度。

研究意义:

  • 实现工单实时跟踪;
  • 优化维修资源分配。

ER图与数据库设计

ER图:

 

mermaid

erDiagram
    USER ||--o{ REPAIR_ORDER : "1:n"
    USER {
        string UserID PK
        string Role
        string Contact
    }
    REPAIR_ORDER ||--o{ COMMENT : "1:n"
    REPAIR_ORDER {
        int OrderID PK
        string UserID FK
        string DeviceInfo
        string Status
    }
    COMMENT {
        int CommentID PK
        int OrderID FK
        string Content
        datetime Time
    }

数据库表结构:

 

sql

-- 工单表
CREATE TABLE RepairOrder (
    OrderID INT AUTO_INCREMENT PRIMARY KEY,
    UserID VARCHAR(20),
    DeviceInfo VARCHAR(200),
    Status ENUM('Pending', 'Processing', 'Completed'),
    FOREIGN KEY (UserID) REFERENCES User(UserID)
);

-- 评论表
CREATE TABLE Comment (
    CommentID INT AUTO_INCREMENT PRIMARY KEY,
    OrderID INT,
    Content TEXT,
    Time DATETIME,
    FOREIGN KEY (OrderID) REFERENCES RepairOrder(OrderID)
);

技术实现与源码

实时工单推送(Firebase Cloud Messaging)​:

 

java

public class NotificationService extends FirebaseMessagingService {
    @Override
    public void onMessageReceived(RemoteMessage message) {
        if (message.getData().containsKey("orderId")) {
            Intent intent = new Intent(this, OrderDetailActivity.class);
            intent.putExtra("orderId", message.getData().get("orderId"));
            PendingIntent pendingIntent = PendingIntent.getActivity(
                this, 0, intent, PendingIntent.FLAG_UPDATE_CURRENT);
            
            NotificationCompat.Builder builder = new NotificationCompat.Builder(this, "repair_channel")
                .setContentTitle("工单状态更新")
                .setContentText(message.getData().get("msg"))
                .setContentIntent(pendingIntent);
            NotificationManagerCompat.from(this).notify(1, builder.build());
        }
    }
}

项目简介

技术栈:

  • 前端: Android (Kotlin) + Material Design
  • 后端: Spring Boot + MySQL
  • 实时通信: WebSocket + FCM

创新点:

  1. OCR识别设备编码: 自动填充设备信息;
  2. 工单优先级算法: 根据设备类型、报修紧急度分配维修人员;
  3. 评价系统: 维修完成后用户评分。

应用场景:

  • 企业IT设备运维;
  • 物业设施报修管理。

3. ​Android旅游APP

开题报告

课题名称: 基于位置服务的智能旅游导航系统设计与实现
研究背景:

  • 旅游信息碎片化,缺乏个性化推荐;
  • 传统导航工具无法满足景点深度游需求。

研究意义:

  • 整合POI数据与用户偏好;
  • 提供AR实景导航功能。

ER图与数据库设计

ER图:

 

mermaid

erDiagram
    USER ||--o{ TRAVEL_PLAN : "1:n"
    USER {
        string UserID PK
        string Preferences
    }
    TRAVEL_PLAN ||--o{ POI : "n:m"
    TRAVEL_PLAN {
        int PlanID PK
        string UserID FK
        string City
    }
    POI {
        int PoiID PK
        string Name
        string Type
        float Rating
    }

数据库表结构:

 

sql

-- 旅游计划表
CREATE TABLE TravelPlan (
    PlanID INT AUTO_INCREMENT PRIMARY KEY,
    UserID VARCHAR(20),
    City VARCHAR(50),
    FOREIGN KEY (UserID) REFERENCES User(UserID)
);

-- 兴趣点表
CREATE TABLE POI (
    PoiID INT AUTO_INCREMENT PRIMARY KEY,
    Name VARCHAR(100),
    Type ENUM('景点', '餐饮', '住宿'),
    Rating FLOAT
);

-- 计划-POI关联表
CREATE TABLE Plan_POI (
    PlanID INT,
    PoiID INT,
    PRIMARY KEY (PlanID, PoiID),
    FOREIGN KEY (PlanID) REFERENCES TravelPlan(PlanID),
    FOREIGN KEY (PoiID) REFERENCES POI(PoiID)
);

技术实现与源码

AR导航(ARCore)​:

 

java

public class ARNavigationActivity extends AppCompatActivity {
    private ArSceneView arSceneView;
    
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_ar_nav);
        arSceneView = findViewById(R.id.arSceneView);
        
        // 设置AR场景
        arSceneView.getScene().addOnUpdateListener(frameTime -> {
            Frame frame = arSceneView.getArFrame();
            if (frame != null) {
                // 获取目标POI坐标并渲染箭头
                renderNavigationArrow(targetLatLng);
            }
        });
    }
    
    private void renderNavigationArrow(LatLng target) {
        // 计算设备与目标的相对位置
        Location current = getCurrentLocation();
        float bearing = current.bearingTo(target);
        
        // 创建指向箭头的AnchorNode
        AnchorNode arrowNode = new AnchorNode();
        arrowNode.setRenderable(loadArrowModel());
        arrowNode.setLocalRotation(Quaternion.axisAngle(
            new Vector3(0f, 1f, 0f), bearing));
        arSceneView.getScene().addChild(arrowNode);
    }
}

项目简介

技术栈:

  • 前端: ARCore + 高德地图SDK
  • 后端: Node.js + MongoDB
  • 推荐算法: 协同过滤 + 地理围栏

创新点:

  1. 动态路线规划: 根据实时交通数据调整导航路径;
  2. 语音导览: TTS播报景点历史文化信息;
  3. 离线地图: 预下载城市地图节省流量。

应用场景:

  • 自由行游客个性化导航;
  • 旅行社行程规划工具。

4. ​易心旅游志愿者系统

开题报告

课题名称: 基于Android的旅游志愿者管理与服务调度系统
研究背景:

  • 大型活动志愿者调度效率低;
  • 缺乏实时沟通与任务追踪工具。

研究意义:

  • 提升志愿者任务匹配精度;
  • 实现服务过程可视化监管。

ER图与数据库设计

ER图:

 

mermaid

erDiagram
    VOLUNTEER ||--o{ TASK : "n:m"
    VOLUNTEER {
        string VolunteerID PK
        string Skills
        string Availability
    }
    TASK ||--o{ LOCATION : "1:1"
    TASK {
        int TaskID PK
        string Type
        string Status
    }
    LOCATION {
        int LocID PK
        string Name
        float Lat
        float Lng
    }

数据库表结构:

 

sql

-- 志愿者表
CREATE TABLE Volunteer (
    VolunteerID VARCHAR(20) PRIMARY KEY,
    Skills JSON,  -- 存储技能标签数组
    Availability ENUM('空闲', '忙碌')
);

-- 任务表
CREATE TABLE Task (
    TaskID INT AUTO_INCREMENT PRIMARY KEY,
    Type ENUM('引导', '翻译', '急救'),
    Status ENUM('未分配', '进行中', '已完成'),
    LocID INT,
    FOREIGN KEY (LocID) REFERENCES Location(LocID)
);

-- 任务分配表
CREATE TABLE Assignment (
    TaskID INT,
    VolunteerID VARCHAR(20),
    PRIMARY KEY (TaskID, VolunteerID),
    FOREIGN KEY (TaskID) REFERENCES Task(TaskID),
    FOREIGN KEY (VolunteerID) REFERENCES Volunteer(VolunteerID)
);

技术实现与源码

任务分配算法:

 

java

public class TaskScheduler {
    public void assignTasks(List<Volunteer> volunteers, List<Task> tasks) {
        // 基于技能匹配与位置优先级的贪心算法
        for (Task task : tasks) {
            Volunteer bestFit = null;
            double maxScore = 0;
            for (Volunteer volunteer : volunteers) {
                if (volunteer.getAvailability().equals("空闲")) {
                    double skillScore = calculateSkillMatch(task.getType(), volunteer.getSkills());
                    double distance = getDistance(volunteer.getLocation(), task.getLocation());
                    double totalScore = skillScore * 0.7 + (1 - distance/1000) * 0.3;
                    if (totalScore > maxScore) {
                        maxScore = totalScore;
                        bestFit = volunteer;
                    }
                }
            }
            if (bestFit != null) {
                assignTaskToVolunteer(task, bestFit);
            }
        }
    }
}

项目简介

技术栈:

  • 前端: Android (Java) + 高德地图SDK
  • 后端: Spring Cloud + Redis
  • 调度算法: 贪心算法 + 实时位置追踪

创新点:

  1. 技能画像匹配: 根据志愿者技能标签自动分配任务;
  2. 实时位置追踪: 监控志愿者移动轨迹确保任务执行;
  3. 紧急任务熔断: 高优先级任务自动抢占资源。

应用场景:

  • 大型赛事志愿者调度;
  • 景区节假日人流疏导。

5. ​Android环卫APP

开题报告

课题名称: 基于GIS的智慧环卫作业监管系统设计与实现
研究背景:

  • 传统环卫管理依赖人工巡查,效率低下;
  • 急需数字化手段优化资源调配。

研究意义:

  • 实现环卫车辆/人员实时监控;
  • 通过数据分析优化清洁路线。

ER图与数据库设计

ER图:

 

mermaid

erDiagram
    WORKER ||--o{ TASK : "1:n"
    WORKER {
        string WorkerID PK
        string VehicleID
        string CurrentLocation
    }
    TASK ||--o{ AREA : "1:1"
    TASK {
        int TaskID PK
        string Type
        datetime Deadline
    }
    AREA {
        int AreaID PK
        string Boundary
        int Priority
    }

数据库表结构:

 

sql

-- 环卫工表
CREATE TABLE Worker (
    WorkerID VARCHAR(20) PRIMARY KEY,
    VehicleID VARCHAR(20),
    CurrentLocation POINT  -- MySQL空间数据类型
);

-- 任务表
CREATE TABLE Task (
    TaskID INT AUTO_INCREMENT PRIMARY KEY,
    Type ENUM('清扫', '运输', '消杀'),
    Deadline DATETIME,
    AreaID INT,
    FOREIGN KEY (AreaID) REFERENCES Area(AreaID)
);

-- 区域表
CREATE TABLE Area (
    AreaID INT AUTO_INCREMENT PRIMARY KEY,
    Boundary POLYGON,  -- 存储区域边界坐标
    Priority INT
);

技术实现与源码

最优路径规划(Dijkstra算法)​:

 

java

public class RoutePlanner {
    public List<Point> calculateOptimalRoute(Point start, List<Point> targets) {
        Graph graph = buildGraphFromMapData();
        List<Point> route = new ArrayList<>();
        Point current = start;
        while (!targets.isEmpty()) {
            Point nearest = findNearestPoint(current, targets);
            route.addAll(graph.getShortestPath(current, nearest));
            targets.remove(nearest);
            current = nearest;
        }
        return route;
    }
    
    private Point findNearestPoint(Point src, List<Point> points) {
        return points.stream()
            .min(Comparator.comparingDouble(p -> distance(src, p)))
            .orElse(null);
    }
}

项目简介

技术栈:

  • 前端: Android (Kotlin) + 百度地图SDK
  • 后端: Django + PostGIS
  • 路径算法: Dijkstra + 遗传算法优化

创新点:

  1. 垃圾满载预测: 基于历史数据预判垃圾桶清理周期;
  2. 异常事件上报: 工人可拍照上传路面损坏等特殊情况;
  3. 碳排量统计: 计算车辆路线优化后的减排效果。

应用场景:

  • 城市环卫局作业监管;
  • 工业园区清洁管理。

文档输出说明

  1. 开题报告模板: 包含背景、目标、技术路线、进度计划;
  2. ER图与数据库设计: 使用Mermaid语法或PowerDesigner绘制;
  3. 核心代码片段: 突出关键技术实现(如OpenCV移动检测、任务分配算法);
  4. 系统演示截图: 包含UI界面、操作流程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值