题目
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有满足条件且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例1:
给定数组 nums = [-1, 0, 1, 2, -1, -4],
满足要求的三元组集合为:
[
[-1, 0, 1],
[-1, -1, 2]
]
解法一
使用暴力求解,初始i=0,j=i+1,k=i+2,然后写三重循环,第三层k从头到尾扫描一遍,每次判断nums[i]+num[j]+num[j] == target
,如果满足使用Set保存结果防止重复,扫面完毕之后。再移动j,j+1。第二层j从头到尾扫面一遍之后移动i,i+1。当i扫描完毕之后,全部结束,时间复杂度为
O
(
n
3
)
O(n^3)
O(n3),提交会超时,所以仅供参考
代码
public List<List<Integer>> threeSum(int[] nums) {
Set<List<Integer>> results = new LinkedHashSet<>();
for (int i = 0; i < nums.length - 2; i++) {
for (int j = i + 1; j < nums.length - 1; j++) {
for (int k = j + 1; k < nums.length; k++) {
if (nums[i] + nums[j] + nums[k] == 0) {
results.add(Arrays.asList(nums[i], nums[j], nums[k]));
}
}
}
}
return new ArrayList<>(results);
}
解法二
参考上面的两数之和,空间换时间,把nums[i] 作为key,i作为value保存到map中。然后使用两层循环,从hashmap中寻找是否存在值target - nums[i] - nums[j]
,如果存在保存到Set中。
代码,将找到的满足条件的值排序是为了保证顺序,防止重复结果,注意要判断r!=i
和r!=j
防止同一个数被用了两次,时间复杂度为
O
(
n
2
)
O(n^2)
O(n2),空间复杂度为
O
(
n
2
)
O(n^2)
O(n2)
public static List<List<Integer>> threeSum(int[] nums) {
Set<List<Integer>> results = new LinkedHashSet<>();
Map<Integer, Integer> map = new HashMap<>(nums.length);
for (int i = 0; i < nums.length - 2; i++) {
for (int j = i+1; j < nums.length; j++) {
int target = -nums[i] - nums[j];
Integer r = map.get(target);
if (r!=null && r != i && r != j) {
List<Integer> list = Arrays.asList(nums[i], nums[j], target);
list.sort(Comparator.naturalOrder());
results.add(list);
} else {
map.put(nums[j], j);
}
}
}
return new ArrayList<>(results);
}
解法三
第三种解法比较巧妙,使用排序+双指针的方法。先对数组排序,从小到大。
外层循环i++,先判断如果nums[i] > 0
,则直接跳出循环结束,因为数组是有序的,当前值大于0,后面的值必然也大于0,所以后面永远不会满足。
内层循环,使用双指针,j指向头,k指向尾。
如果num[j] + num[k] + num[i] > 0
,说明值大了,k–,num[k]就被减小了,结果逼近0。
如果num[j] + num[k] + num[i] < 0
, 说明值小了,j++,num[j]就被增大了,结果逼近0。
如果num[j] + num[k] + num[i] == 0
,保存值说明找到了,移动k并跳过和num[k]相同的值,移动j并跳过和num[j]相同的值,防止结果重复。
外层循环i也要跳过重复的值,防止重复。
代码如下所示
public static List<List<Integer>> threeSum(int[] nums) {
List<List<Integer>> results = new LinkedList<>();
Arrays.sort(nums);
for (int i = 0; i < nums.length-2; i++) {
if (nums[i] > 0) break;
if (i!=0 && nums[i] == nums[i-1]) continue;
int j = i+1;
int k = nums.length - 1;
while (j < k) {
int sum = nums[i] + nums[j] + nums[k];
if (sum < 0) {
j++;
} else if (sum > 0) {
k--;
} else {
results.add(Arrays.asList(nums[i], nums[j], nums[k]));
j++;
k--;
while (j < k && nums[j] == nums[j-1]) j++;
while (j < k && nums[k] == nums[k+1]) k--;
}
}
}
return results;
}