AI City challenge2018冠军论文阅读

原文:论文
代码:github
这个队伍的想法很创新,首先他对于SCT,没有采用深度学习提取特征的这种方法,而是偏向使用图像图形学的知识,而且对于mtmc的处理,大部分论文使用了聚类的办法,但是它采用了计算非训练的方法,经由reid之后,去一一匹配。
下面说一下他的创新点:首先进行相机校准。
为什么要进行相机校准呢:在多镜头多目标的追踪下,需要利用不同镜头下的物体视觉信息,减少被遮挡区域,并且提供目标和场景的3D信息,相机视图对于3D场景有畸变作用,比如你不能确定远处的物体到底有多远,所以要使用相机校准还原3D场景。
在这里插入图片描述

相机校准

现附上一位大佬的博客吧:3D重建之相机校准
简而言之,相机拍照会经历3个坐标系:图像坐标系,相机坐标系,世界坐标系。相机的参数分为两个:相机内参和相机外参,内参用于相机坐标系投影到图像

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值