HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?(子向量的长度至少是1);
重点:考虑全正和全负数两种特殊情况;
public static int FindGreatestSumOfSubArray(int[] array) {
int n=array.length;
if(n==1)return array[0];
int [] arr=new int[n];
int res=Integer.MIN_VALUE;
int resfu=Integer.MIN_VALUE;
int count=0;
int allzsum=0;
for(int i=0,index=0;i<n;i++){
allzsum+=array[i];
if(array[i]<0){
arr[index++]=i;
count++;
if(resfu<array[i])resfu=array[i];
}
}
int m=count;//计数小于0的个数
if(n==m)return resfu;//全负数
if(m==0)return allzsum;//全正数
for(int k=0,index=0,start=-1;k<m;k++){
index=k;
for(int j=start+1,sum=0;j<n;j++){
sum+=array[j];
if(j==arr[k]){
sum-=array[j];
if(res<=sum)res=sum;
k++;
sum+=array[j];
} else if(res<=sum)res=sum;
}
k= index;
if(arr[k]!=0){
start=arr[k];}
}
return res;
}