题面:

解题:
一开始先是被样例输入的一堆四位数吓到了……
随后定睛一看:5个人!?Seriously?
懒人必选の大爆搜
由于本题数据量很小,五层循环搜索最大次数也仅10^5,代码飞快地跑了66ms后,轻松AC!
#include<iostream>
#define maxn 2147483647
using namespace std;
int a[6][11], need[6] = { 0 }; //a[]读入 //need[i]代表i号选手需要跑的里程
int ans = maxn; //设为int的最大值,保证后续能被更新
int main()
{
for (int i = 1; i <= 5; i++)
for (int j = 1; j <= 10; j++)
cin >> a[i][j];
for(int h=1;h<=10;h++)
for(int i=1;i<=10;i++)
for(int j=1;j<=10;j++)
for(int k=1;k<=10;k++)
for(int l=1;l<=10;l++)
{
if (h + i + j + k + l != 25)continue; //五个人的里程加起来不是25,光速开润~~节省空间
int temp = a[1][h] + a[2][i] + a[3][j] + a[4][k] + a[5][l]; //五个人加起来跑的总时间
if(temp<=ans)
{
need[1] = h;
need[2] = i;
need[3] = j;
need[4] = k;
need[5] = l;
ans = temp;
}
}
cout << ans << endl;
for (int i = 1; i <= 5; i++)cout << need[i] << " ";
return 0;
}
贪心算法
题解区也有一位大佬分享了自己使用贪心算法AC的代码:
#include<cstdio>
#include<iostream>
using namespace std;
int minx=2147483647,flag,ans;//定义最小值,标志变量和最小路程
int a[5][11],b[5][11],c[5];//3个数组
int main(){//过程华丽开始
c[0]=c[1]=c[2]=c[3]=c[4]=1;//注意,初值为1
for(int i=0;i<5;i++){
for(int j=1;j<11;j++){
cin>>a[i][j];//读入
b[i][j]=a[i][j]-a[i][j-1];//计算
}
}
for(int i=0;i<20;i++){
minx=2147483647;//每次更新初始值
for(int j=0;j<5;j++){
if(b[j][c[j]+1]<minx&&c[j]+1<=10){//如果比目前最小值小,且没有超过10km
flag=j;//标志
minx=b[j][c[j]+1];//最小值更新
}
}
c[flag]++;//增加
}
for(int i=0;i<5;i++){
ans+=a[i][c[i]];//计算最优解
}
printf("%d\n%d %d %d %d %d\n",ans,c[0],c[1],c[2],c[3],c[4]);//完美输出
return 0;//过程华丽结束
}
这里简单地说明一下:
先用数组b[ i ][ j ]储存第i名选手跑第j公里所需的里程,其值为a[ i ][ j ]-a[ i ][ j-1 ] (j>=2)
然后,让五名选手的里程都从1KM的位置开始加,寻找当前多跑1KM,所多花费时间最短的选手,其里程加1KM,再继续搜索,直到5名选手的总里程达25KM为止。
注意:这种方法生效的原因,是因为题目中的这句话:
连续跑的路程越长,速度越慢,当然也有特殊的,就是速度不会变慢,但是绝不可能变快。
既然不会变快,说明不会有一名选手第2KM跑了1000s,但后面8KM只跑了1s这样的奇葩情况出现,即选手们跑步的时间是递增的,是有序的,因此,可以采用贪心算法。