【语音识别】语音助手--语音识别流程简介

整体语音识别交互流程如下:
在这里插入图片描述

一、语音唤醒

语音唤醒指的是通过预设的关键词即可将智能硬件从休眠状态唤醒,来执行相应的操作。

1.1 传统模式

先唤醒设备,等硬件设备反馈后(提示音或亮灯),用户认为设备被唤醒了,然后再发出语音控制命令,对应的缺点就是交互时间过长。例如:

  • 用户:“小爱同学”
  • 小米手机:“我在”
  • 用户:“明天的天气”
  • 小米手机:“。。。。。。”

1.2 One-shot

One-shot 是直接将唤醒词和工作命令一同说出,例如:“google goole, 我想听琼丹佛的歌”

1.3 Zero-shot

Zero-shot 是将常用的用户指令设置为唤醒词,达到用户无感知唤醒,例如(直接对设备说):“导航到XXX”

1.4 自定义唤醒词唤醒

通过自定义唤醒词来进行唤醒,满足用户的个性化需求。

1.5 全双工连续对话

二、信号增强(SSE)

三、语音识别 (ASR)

四、自然语言理解(NLU)

五、核心任务

六、自然语言处理(NLG)

自然语言生成(NLG)是自然语言处理的一部分,从知识库或逻辑形式等等机器表述系统去生成自然语言。

6.1 NLG的实现方式

6.1.1 基于模板的NLG

这种形式的NLG使用模板驱动模式来显示输出。数据动态地保持更改,并由预定义的业务规则集(如if / else循环语句)生成。

对应的判断条件包括NLU的结构化数据(领域、意图、槽位),以及DST、DPL,基于判断条件,来生成对应的模板回复。例:

  • 用户query"我要听晴天"举例,NLU已经提取了对应的domain、intent、槽位等信息。可以将正则表达式抽象成:
  • if domain=“music”& intent=“根据歌名听音乐”& song=“晴天”,对应回复的话术"好的,一首晴天送给你,祝你有一天好心情"

6.1.2 知识问答型对话的NLG

知识问答型对话中的NLG就是根据问句类型识别与分类、信息检索或文本匹配而生成用户需要的知识(知识、实体、片段等),这类回复相比单纯的信息检索一般用户体验会更好,因为一般信息检索还需要用户根据搜索结果自己找所需信息。

6.1.3 闲聊型对话的NLG

闲聊型对话中的NLG就是根据上下文进行意图识别、情感分析等,然后生成开放性回复;

6.1.4 推荐型对话系统的NLG

推荐型对话系统中的NLG就是根据用户的爱好来进行兴趣匹配以及候选推荐内容排序,然后生成给用户推荐的内容。

七、文本转语音(TTS)

文字转语音(Text-To-Speech,TTS)则是将一般语言的文字转换为语音,以音频的方式播放给到用户。

参考:https://blog.csdn.net/fish_study_csdn/article/details/130978041

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值