逻辑回归(logistics regression)为什么要对特征进行离散化
非线性。逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合;离散特征的增加和减少都很容易,易于模型的快速迭代;速度快。稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展;鲁棒性。离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰;方便交叉与特征组合。离散化后可以进行特征交叉,由M+N个变量变..
原创
2020-11-19 15:04:04 ·
1174 阅读 ·
0 评论