八大常见排序算法-算法面试

概述

排序分为内部排序和外部排序,内部排序是待排序的元素全部放在内存,并在内存中调整它们的顺序。外部排序是部分元素放到内存中,在内外存间调整元素的顺序。我们通常说的八大排序直接插入排序、希尔排序、简单选择排序、冒泡排序、快速排序、堆排序、归并排序、基数排序都是内部排序,下面来具体介绍这八种排序的如何用Java实现,以及它们所需的时间复杂度和空间复杂度。

 

直接插入排序

基本思想:将一个待排序的元素插入到已经排好序的序列中,如果待排序的元素与有序序列的中的某个元素相等,则把待排序元素插到该元素后面。

算法实现

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
public static void insertSort(int[] element) {        for (int i = 1; i < element.length; i++) {            int tmp = element[i];            int j = i -1;            for (; j >= 0; j--) {                if (tmp < element[j]) {                    element[j + 1] = element[j];                } else {                    break;                }            }            //正确的插入位置是:j+1            element[j+1] = tmp;        }    }
 

时间复杂度
直接插入排序是稳定的排序,其时间复杂度是O(n^2)
说明:稳定的排序是指相等的元素经过排序后,其相对位置没有发生改变
说明:如果待排序的元素是正序(从小到大排列),每插入一个元素只需比较一次,这样时间复杂度就是O(n)。反之,如果待排序的元素是逆序(从大到小排列),当插入第i个元素时,需要比较i次,这样时间复杂度是O(n^2)

 

希尔排序

基本思想

希尔排序实质上是一种分组插入排序,其先将整个待排元素序列分割成若干个子序列(由距离为d的元素组成)分别进行直接插入排序,然后依次减少距离d再进行排序,当距离为1时,再对全体元素进行一次直接插入排序。
算法实现

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
public static void hellSort(int[] element){        int d = element.length;        while (true){            d = d/2;            for(int i = 0; i < d; i++){                for(int j = i+d; j < element.length; j+=d){                    int tmp = element[j];                    int k = j-d;                    for(;k >= 0; k-=d){                        if(tmp < element[k]){                            element[k + d ] = element[k];                        }                        else{                            break;                        }                    }                    element[k + d] = tmp;                }            }            if(d == 1) break;        }    }
 

时间复杂度
希尔排序中相同的元素可能在各自组的插入排序中移动,最后其稳定性会被打乱,所以希尔排序是不稳定的,其时间复杂度是O(nlogn)

 

简单选择排序

基本思想

在n个待排序的元素中找取最小的元素与第一个元素交换位置,然后在n-1个元素中找取最小的元素与第二元素交换位置,直到n=1为止。
算法实现:

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
public static void selectSort(int[] element){        int minPos;        int tmp;        for(int i = 0 ; i < element.length; i++ ){            minPos = i;            for(int j = i+1; j < element.length; j++){                if(element[j] < element[minPos]){                    minPos = j;                }            }            tmp = element[minPos];            element[minPos] = element[i];            element[i] = tmp;        }    }
 

时间复杂度:
简单选择排序是不稳定的排序,其时间复杂度是O(n^2)
不稳定说明
假设待排元素序列是:6,4,6,7,2,9,第一次排序后,序列变成了2,4,6,7,6,9,我们可以发现,经过一次排序后,位置一的6调整到位置三的6的后面,所以简单选择排序是不稳定的排序。

 

冒泡排序

基本思想

从待排序元素的倒数第一位开始向前遍历,如果当前元素比前面元素小,则交换位置。这样一次遍历下来,最小的元素冒泡到第一个位置了,然后,从倒数第二位、第三位...开始向前遍历,重复上面的过程,直到元素有序。
算法实现:

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
public static void bubbleSort(int[] element){        int tmp;        int len = element.length;        for(int i = 0; i < len; i++ ) {            for (int j = len -1; j - 1 >= i; j--) {                if (element[j] < element[j - 1]) {                    tmp = element[j];                    element[j] = element[j - 1];                    element[j - 1] = tmp;                }            }        }    }
 

时间复杂度:
冒泡排序是稳定的排序,时间复杂度是O(n^2)

 

快速排序

基本思想:

选择一个基准元素(通常选择第一个元素或者最后一个元素),通过一次排序将待排序列分为两部分,一部分都比基准元素小,另一部分都比基准元素大,然后再按此方法对这两组数据分别进行快速排序,直到待排序列有序。
算法实现:

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
public static void quickSort(int[] element, int low, int high) {        if (low < high) {            int mid = partition(element, low, high);            quickSort(element, low, mid - 1);            quickSort(element, mid + 1, high);        }    }

    public static  int partition(int[] element, int low, int high){       int baseElement = element[low];
        while (low < high) {            while (low < high && baseElement <= element[high]) high--;            element[low] = element[high];            while (low < high && baseElement >= element[low]) low++;            element[high] = element[low];        }        element[low] = baseElement;        return  low;    }
 

时间复杂度:
快速排序是不稳定排序,时间复杂度是O(nlogn)

 

堆排序

基本思想:

堆的概念
n个元素的序列{k1,k2,…,kn}当且仅当满足下列关系之一时,称之为堆。
  情形1:ki <= k2i 且ki <= k2i+1 (最小堆)
  情形2:ki >= k2i 且ki >= k2i+1 (最大堆)
  其中i=1,2,…,n/2向下取整
;
堆排序
把待排序的序列看作是一棵顺序存储的二叉树,调整它们的存储顺序,使之成为一个最大堆,这时堆的根节点数最大。然后,将根节点与堆的最后一个节点交换,并对前面n-1个数重新调整使之成为堆,依此类推,最后得到有n个节点的有序序列。
从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆结果。
说明:若想得到升序序列,则建立最大堆,若想得到降序序列,则建立最小堆
算法实现:

 
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
public static void heapSort(int[] element) {        //step1:建堆        int length = element.length;        for (int i = length / 2 - 1; i >= 0; i--) {            adjustHeap(element, i, length - 1);        }        //step2:交换位置,调整堆结构        int tmp;        for (int j = length - 1; j >= 0; j--) {            tmp = element[j];            element[j] = element[0];            element[0] = tmp;            adjustHeap(element, 0, j - 1);        }    }
    public static void adjustHeap(int[] element, int start, int end) {        int tmp = element[start];        for (int i = 2 * start + 1; i <= end; i = 2 * i + 1) {            //定位父节点的左右孩子值较大的节点            if (i < end && element[i] < element[i + 1]) {                i++;            }            //父节点比左右孩子值都大,则跳出循环            if (tmp > element[i]) {                break;            }            //进行下一轮的筛选            element[start] = element[i];            start = i;        }        element[start] = tmp;    }
 

时间复杂度
堆排序是不稳定的排序,其时间复杂度是O(nlogn)

 

归并排序

基本思想

是把待排序序列分为若干个子序列,每个子序列是有序的,然后再把有序子序列合并为整体有序序列。
算法实现

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
public static void mergeSort(int[] element, int left, int right) {        if (left < right) {            int mid = (left + right) / 2;            //左边进行递归排序            mergeSort(element, left, mid);            //右边进行递归排序            mergeSort(element, mid + 1, right);            //左右两部分进行合并处理            merge(element, left, mid, right);        }    }

    public static void merge(int[] element, int left, int middle, int right) {        int[] tmpElement = new int[element.length];        int index = left;        int mid = middle + 1;        int tmpIndex = left;        while (left <= middle && mid <= right) {            if (element[left] < element[mid]) {                tmpElement[index++] = element[left++];            } else {                tmpElement[index++] = element[mid++];            }        }        while (left <= middle) {            tmpElement[index++] = element[left++];        }        while (mid <= right) {            tmpElement[index++] = element[mid++];        }
        while (tmpIndex <= right){            element[tmpIndex] = tmpElement[tmpIndex ++];        }    }
 

时间复杂度:
归并排序是稳定的排序,其时间复杂度为O(nlogn)

 

字基数排序

基本思想

将所有待排序列(正整数)统一为同样的数位长度,数位较短的数前面补零。然后 ,从最低位开始,依次进行一次排序。这样,从最低位一直到最高位排序完成以后, 数列就变成一个有序序列。

算法实现

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
public static void radixSort(int[] number, int d) //d表示最大的数有多少位    {        int k = 0;        int n = 1;        int m = 1; //控制键值排序依据在哪一位        int[][] temp = new int[10][number.length]; //数组的第一维表示可能的余数0-9        int[] order = new int[10]; //数组orderp[i]用来表示该位是i的数的个数        while (m <= d) {            for (int i = 0; i < number.length; i++) {                int lsd = ((number[i] / n) % 10);                temp[lsd][order[lsd]] = number[i];                order[lsd]++;            }            for (int i = 0; i < 10; i++) {                if (order[i] != 0)                    for (int j = 0; j < order[i]; j++) {                        number[k] = temp[i][j];                        k++;                    }                order[i] = 0;            }            n *= 10;            k = 0;            m++;        }    }
 

时间复杂度:
基数排序是稳定的排序,其时间复杂度为O(d(n+r)),d为位数,r为基数范围。

附:八大排序的时间复杂度、空间复杂度、稳定性

长按订阅更多精彩

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值