Datawhale AI 夏令营
1.机器学习
task1
时间序列预测问题可以通过多种建模方法来解决,包括传统的时间序列模型、机器学习模型和深度学习模型。
对比总结
- 适用性:传统模型适合数据量较小、模式简单的问题;机器学习模型适合中等复杂度的问题,可以引入额外变量;深度学习模型适合数据量大、模式复杂的任务。
- 解释性:传统时间序列模型通常具有较好的解释性;机器学习模型的解释性取决于特征工程;深度学习模型的解释性通常较差。
- 计算资源:传统模型计算效率最高;机器学习模型次之;深度学习模型通常需要最多的计算资源。
- 预测能力:深度学习模型在捕捉复杂模式方面具有优势,但需要大量数据支持;传统和机器学习模型在数据量较小或模式较简单时可能更有效。
代码:
# 1. 导入需要用到的相关库
# 导入 pandas 库,用于数据处理和分析
import pandas as pd
# 导入 numpy 库,用于科学计算和多维数组操作
import numpy as np
# 2. 读取训练集和测试集
# 使用 read_csv() 函数从文件中读取训练集数据,文件名为 'train.csv'
train = pd.read_csv('