脏读
指当一个事务正在访问数据,并且对数据进行了修改,而这种修改还没有提交到数据库中,这时,另外一个事务也访问这个数据,然后使用了这个数据。因为这个数据是还没有提交的数据, 那么另外一个事务读到的这个数据是脏数据,依据脏数据所做的操作可能是不正确的。
不可重复读
指在一个事务内,多次读同一数据。在这个事务还没有结束时,另外一个事务也访问该同一数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改,那么第一个事务两次读到的数据可能是不一样的。这样就发生了在一个事务内两次读到的数据是不一样的,因此称为是不可重复读。
幻读
指当事务不是独立执行时发生的一种现象,例如第一个事务对一个表中的数据进行了修改,这种修改涉及到表中的全部数据行。同时,第二个事务也修改这个表中的数据,这种修改是向表中插入一行新数据。那么,以后就会发生操作第一个事务的用户发现表中还有没有修改的数据行,就好象发生了幻觉一样。
MySQL InnoDB四个事务级别
MySQL InnoDB 事务的隔离级别 有四级,默认是 “ 可重复读 ” ( REPEATABLE READ )
- 未提交读( READ UNCOMMITTED )
另一个事务修改了数据,但尚未提交,而本事务中的 SELECT 会读到这些未被提交的数据(脏读)
- 提交读( READ COMMITTED )
本事务读取到的是最新的数据(其他事务提交后的)。问题是,在同一个事务里,前后两次相同的 SELECT 会读到不同的结果(不重复读)
- 可重复读( REPEATABLE READ )
在同一个事务里, SELECT 的结果是事务开始时时间点的状态,因此,同样的 SELECT 操作读到的结果会是一致的。但是,会有幻读现象
- 串行化( SERIALIZABLE )
读操作会隐式获取共享锁,可以保证不同事务间的互斥。
四个级别逐渐增强,每个级别解决一个问题
Spring的事务
事务的传播行为
在Spring 的事务中, 可以通过 propagation 来定义事务的传播行为 :
- PROPAGATION_REQUIRED:如果当前没有事务,就新建一个事务,如果已经存在一个事务中,加入到这个事务中。这是最常见的选择。
- PROPAGATION_SUPPORTS:支持当前事务,如果当前没有事务,就以非事务方式执行。
- PROPAGATION_MANDATORY:使用当前的事务,如果当前没有事务,就抛出异常。
- PROPAGATION REQUIRES NEW:新建事务,如果当前存在事务,把当前事务挂起。
- PROPAGATION NOT SUPPORTED:以非事务方式执行操作,如果当前存在事务,就把当前事务挂起。
- PROPAGATION_NEVER:以非事务方式执行,如果当前存在事务,则抛出异常。
隔离界别
在Spring 的事务中, 可以通过 isolation 来定义。 该隔离界别主要定义了一个事务和其他事务进行的资源或者数据更改相隔离的程度。
- ISOLATION_DEFAULT:默认的隔离级别,使用数据库默认的事务隔离级别.
- ISOLATION READ UNCOMMITTED: 这种隔离级别会产生脏读,不可重复读和幻像读。这是事务最低的隔离级别,它充许令外一个事务可以看到这个事务未提交的数据。
- OLATION READ COMMITTED:这种事务隔离级别可以防止脏读。但是可能出现不可重复读、幻读。保证一个事务修改的数据提交后才能被另外一个事务读取。另外一个事务不能读取该事务未提交的数据。
- ISOLATION REPEATABLE READ:这种事务隔离级别可以防止脏读,不可重复读。但是可能出现幻读。它除了保证一个事务不能读取另一个事务未提交的数据外,还保证了避免不可重复读情况产生。
- ISOLATION_SERIALIZABLE:这种事务隔离级别可以防止脏读,不可重复读、幻读。这是花费最高代价但是最可靠的事务隔离级别。事务被处理为顺序执行。
乐观锁
乐观锁,大多是基于数据版本 ( Version )记录机制实现。
每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库如果提供类似于write_condition机制的其实都是提供的乐观锁。
何谓数据版本?
即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version” 字段来实现。
读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。
下面以修改用户帐户信息为例子,假设数据库中帐户信息表中有一个 version 字段,当前值为 1;而当前帐户余额字段为100
- 操作员 A 此时将其读出( version=1 ),并从其帐户余额中扣除 50(100-50 )
- 在操作员 A 操作的过程中,操作员B 也读入此用户信息( version=1 ),并从其帐户余额中扣除 20(100-20 )
- 操作员 A 完成了修改工作,将数据版本号加一( version=2 ),连同帐户扣除后余额(50),提交至数据库更新,此时由于提交数据版本大于数据库记录当前版本,数据被更新,数据库记录 version 更新为 2 。
- 操作员 B 完成了操作,也将版本号加一( version=2 )试图向数据库提交数据(80 ),但此时比对数据库记录版本时发现,操作员 B 提交的数据版本号为 2 ,数据库记录当前版本也为 2 ,不满足 “ 提交版本必须大于记录当前版本才能执行更新 “ 的乐观锁策略,因此,操作员 B 的提交被驳回。
这样,就避免了操作员 B 用基于 version=1 的旧数据修改的结果覆盖操作员A 的操作结果的可能。
悲观锁
悲观锁,正如其名,具有强烈的独占和排他特性。
每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。
它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度,因此,在整个数据处理过程中,将数据处于锁定状态。
悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了加锁机制,也无法保证外部系统不会修改数据)