池化与非池化

在使用arcgis后,发现很多问题,学习之后了解到,池化与非池化的概念,例如请求ogc服务中,客户端向服务器请求实例,若池化则会是获取和释放,若非池化,则是创建与关闭。这几个字已经很清楚了,我理解就像是数据库连接池一样的作用。

开始的问题出现在请求wms时一个客户端请求8个图层会出现卡顿,bug,原因不明,后发现改池化中的最大最小实例数能有效的解决这一问题,因在普通计算机上测试,arcgis server启动服务后,池化我设置成最小0,最大20,应该可以有20个实例,然而,两个客户端同时打开并请求8个服务没问题,但普通计算机会变得很卡,4g内存基本满,cpu蹦到100,应该加个切片缓存一类的东西。

### 平均池化与最大池化的概念 在神经网络中,池化操作用于减少特征图的空间尺寸并提取重要信息。两种最常见的池化方式分别是平均池化最大池化。 #### 平均池化 (Average Pooling) 平均池化通过计算局部区域内的像素值的算术平均来生成下一层的输入。具体来说,在给定的感受野内,所有元素会被求平均值作为该感受野对应位置的新输出值[^1]。这种方法有助于保留图像的整体结构信息,并且对于光照变化具有一定的鲁棒性。 ```python import numpy as np def average_pooling(input_data, pool_size=(2, 2)): h_out = input_data.shape[0] // pool_size[0] w_out = input_data.shape[1] // pool_size[1] pooled_output = np.zeros((h_out, w_out)) for i in range(h_out): for j in range(w_out): patch = input_data[i*pool_size[0]:(i+1)*pool_size[0], j*pool_size[1]:(j+1)*pool_size[1]] pooled_output[i][j] = np.mean(patch) return pooled_output ``` #### 最大池化 (Max Pooling) 相比之下,最大池化选取的是每个局部区域内最大的数值作为代表。这意味着它会捕捉最显著或最具激活性的特征点,从而使得模型能够关注于更明显的边缘或其他突变处的信息。这种机制通常可以增强对物体形状轮廓的理解能力。 ```python def max_pooling(input_data, pool_size=(2, 2)): h_out = input_data.shape[0] // pool_size[0] w_out = input_data.shape[1] // pool_size[1] pooled_output = np.zeros((h_out, w_out)) for i in range(h_out): for j in range(w_out): patch = input_data[i * pool_size[0]:(i + 1) * pool_size[0], j * pool_size[1]:(j + 1) * pool_size[1]] pooled_output[i][j] = np.max(patch) return pooled_output ``` ### 主要差异 两者之间的一个关键不同在于它们如何处理数据中的噪声平滑度: - **抗噪性能**:由于平均池化考虑到了整个窗口范围内的所有值,因此它可以更好地抑制异常高的响应;而最大池化则更容易受到极端值的影响。 - **细节保持**:另一方面,当涉及到保存细粒度纹理时,最大池化往往表现得更好因为它倾向于突出显示那些重要的视觉线索而不是简单地模糊掉一切。 综上所述,选择哪种类型的池化取决于具体的任务需求以及所期望达到的效果[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值