Flink任务提交流程(Standalone和Yarn)

本文详细介绍了Flink任务在Standalone和Yarn环境下的提交流程,包括客户端提交、Flink Cluster启动和Job运行。在Standalone模式下,任务通过Dispatcher提交,JobManager申请并分配TaskManager资源。在Yarn模式中,任务先上传到HDFS,客户端向ResourceManager提交Job,启动ApplicationMaster,之后JobManager申请和分配TaskManager资源。整个流程涉及心跳包通信、资源申请和数据交换。
摘要由CSDN通过智能技术生成

一、任务提交流程(Standalone)

1)App程序通过rest接口提交给Dispatcher(rest接口是跨平台,并且可以直接穿过防火墙,不需考虑拦截)。
2)Dispatcher把JobManager进程启动,把应用交给JobManager。
3)JobManager拿到应用后,向ResourceManager申请资源(slots),ResouceManager会启动对应的TaskManager进程,TaskManager空闲的slots会向ResourceManager注册。
4)ResourceManager会根据JobManager申请的资源数量,向TaskManager发出指令(这些slots由你提供给JobManager)。
5)接着,TaskManager可以直接和JobManager通信了(它们之间会有心跳包的连接),TaskManager向JobManager提供slots,JobManager向TaskManager分配在slots中执行的任务。
6)最后,在执行任务过程中,不同的TaskManager会有数据之间的交换。

二、任务提交流程(Yarn)

1)提交App之前,先上传Flink的Jar包和配置到HDFS,以便JobManager和TaskManager共享HDFS的数据。
2)客户端向ResourceManager提交Job,ResouceManager接到请求后,先分配container资源,然后通知NodeManager启动ApplicationMaster。
3)ApplicationMaster会加载HDFS的配置,启动对应的JobManager,然后JobManager会分析当前的作业图,将它转化成执行图(包含了所有可以并发执行的任务),从而知道当前需要的具体资源。
4)接着,JobManager会向ResourceManager申请资源,ResouceManager接到请求后,继续分配container资源,然后通知ApplictaionMaster启动更多的TaskManager(先分配好container资源,再启动TaskManager)。container在启动TaskManager时也会从HDFS加载数据。
5)最后,TaskManager启动后,会向JobManager发送心跳包。JobManager向TaskManager分配任务。

Flink on YARN 流程图

        Flink on YARN集群部署模式涉及YARN和Flink两大开源框架,应用启动流程的很多环节交织在一起,为了便于大家理解,在一张图上画出了Flink on YARN基础架构和应用启动全流程,并对关键角色和流程进行了介绍说明,整个启动流程又被划分成客户端提交(流程标注为紫色)、Flink Cluster启动和Job提交运行(流程标注为橙色)两个阶段分别阐述,由于分支和细节太多,本文会忽略掉一些,只介绍关键流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值