直方图内最大矩形:用栈实现一些之前可以确定的值。

题目描述

有一个直方图,用一个整数数组表示,其中每列的宽度为1,求所给直方图包含的最大矩形面积。比如,对于直方图[2,7,9,4],它所包含的最大矩形的面积为14(即[7,9]包涵的7x2的矩形)。

给定一个直方图A及它的总宽度n,请返回最大矩形面积。保证直方图宽度小于等于500。保证结果在int范围内。

测试样例:
[2,7,9,4,1],5

返回:14


思路:用栈实现一些之前可以确定的值。


struct Rect
{
    int height;
    int width;
};
/*
    以[2,7,9,4,1]为例,当遍历到4时,代表7,9所生成的面积已经可以完全确定。所以这题可以用栈实现,且时间为O(n)
*/
class MaxInnerRec {
public:
    int countArea(vector<int> A, int n) {
        stack<Rect> st;
        A.push_back(0);
        int maxs=0;
        for (int i = 0; i < n+1; ++i)
        {
            Rect node;
            Rect cur;

            node.height=A[i];
            node.width=1;

            int lastwidth=0;

            while(!st.empty()&&st.top().height>A[i]){//栈中比当前A[i]大的所有可产生的矩形面积均可确定。
                cur=st.top();
                st.pop();
                cur.width+=lastwidth;
                lastwidth=cur.width;
                int s=cur.height*cur.width;
                if(s>maxs)  
                    maxs=s;
            }
            node.width+=lastwidth;
            st.push(node);
        }
        return maxs;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值