scau_专题1训练总结

本文详细介绍了数论领域的核心概念和技术,包括单纯形、线性筛、欧拉函数等,并探讨了米勒测试及Rho算法的应用场景。此外,还讨论了FFT与NTT的区别及其在高精度乘法中的应用,以及大步小步算法和莫比乌斯反演等高级主题。
摘要由CSDN通过智能技术生成

今天是师兄讲解数论专题,觉得还是有一一部分听懂了,赶紧做下笔记,防止哪天忘了还可以来翻一翻:

1.单纯形:

作用:解决现实中数学的线性规划。


2.线性筛:

作用:用于在线性时间内筛选素数。


3.欧拉函数:

作用:用于查找在1~n-1的范围内有多少数与n互质


4.米勒测试以及Rho算法:

作用:米勒测试用于判断n是否为素数的随机测试,Rho算法用于求n的所有约数


5.FFT和NTT:

作用:同为高精度乘法,不怎么明白原理。FFT不能用于取余,NTT可以用于取余,复杂度都为o(n*logn)


6.大步小步算法:

作用:对给定的A,B和C,求一个x(0<=x<C),满足A^x%C==B%C。


7.莫比乌斯反演:

作用:0表示该数含有素数的n次方(n>1),-1代表该数所含素数个数为奇数,1代表该数所含素数为偶数


8.SG博弈:

作用:一类特殊的博弈。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值